• Title/Summary/Keyword: double extensometer

Search Result 3, Processing Time 0.02 seconds

Establishment of strain measurement system for evaluation of strain effect in HTS tapes under magnetic field

  • Dedicatoria, Marlon J.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.14-17
    • /
    • 2011
  • The evaluation of the electromechanical properties of HTS CC tapes is one of the foremost procedures to be done to ensure the applicability of superconducting wires to electric devices. A precise measurement of the stress and strain is important in deriving the mechanical properties under operating environment. Up to now, there is no standard test method yet for the electromechanical property evaluation of HTS tapes under self field and external magnetic field although there are already reports on the different devices used to evaluate these properties. Strain can be measured by adopting a strain gauge or a high resolution double extensometer. In this study, strain effect on $I_c$ in HTS CC tapes under magnetic fields was evaluated. Comparison of advantages and setback of strain measuring devices were discussed. In addition, a dual strain measurement system using both the SG and extensometer may be practical to lessen the burden in case one of the measuring devices does not work well.

Design of δ5 Clip Gage for CTOD Measurement (CTOD 측정용 δ5 Clip Gage 설계)

  • Park, Tai-Heoun;Nahm, Seung-Hoon;Kim, Am-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.343-351
    • /
    • 2004
  • The flaw assessment method based on ${delta}_5$ parameter was recently proposed and put to the practical use. However: since it is almost impossible to measure the ${delta}_5$ by the existing commercial clip gager, we need to develope the specially designed gages which are suitable for that purpose. In this research, a double cantilever type ${delta}_5$ clip gage with the traveling distance of 4mm was developed by the finite element analysis and the construction of Wheatstone bridge circuit including strain gages. The linearity of developed ${delta}_5$ clip gage was evaluated by the MTS extensometer calibrator with the proper adapters which allow the 6s clip gage to sit on the calibrator. Consequently, the 6s clip gage revealed the good linearity between the output voltage and the traveling distance of gage.

Establishment of CTE Measurement Procedure for PPLP at 77 K for HTS Power Cables using Double Extensometers

  • Dedicatoria, Marlon J.;Dizon, John Ryan C.;Shin, Hyung-Seop;Sim, Ki-Duk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.24-27
    • /
    • 2012
  • The measurement of the coefficient of thermal expansion (CTE) of polypropylene laminated paper (PPLP) as electric insulating material is important for its practical superconducting device application. The thermal strain induced to HTS tapes and its insulating material during cooling from room temperature might largely affect the critical current ($I_c$) of HTS tapes. In this study, the thermal contraction of PPLP material was measured during cooling from 300 K to 77 K using double extensometers. Initially, the CTE of a brass tape was measured and it was compared with a reference data. It was found that the measured thermal expansion data of the brass material approaches that of the reference one. Based on the results, it was then confirmed that the measurement technique could be applied to thin and flexible samples. Therefore, the same measurement procedure was applied to PPLP material using double extensometers. As a result, the linear CTE of the PPLP at 77 K has been measured to be ${\sim}15.3{\times}10^{-6}/K$. Also, it was found that the thermal contraction characteristics of PPLP was dominated by polypropylene on the cross direction (higher thermal contraction) while it was dominated by Kraft paper on the machine direction (lower thermal contraction). Overall, this measurement procedure could be adopted for the determination of CTE of flexible materials such as PPLP.