• Title/Summary/Keyword: double capacitor

Search Result 265, Processing Time 0.024 seconds

Effect of carbonization temperature of AC/C composite electrode on electro double layer capacitor (탄화온도가 상이한 활성탄소 복합제 전극이 전기이중층 케페시터의 층방전 특성에 미치는 영향)

  • Jo, Young-Keun;Jung, Doo-Hwan;Kim, Chang-Soo;Park, So-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1821-1823
    • /
    • 1999
  • Carbon is an attractive material on electro double capacitor which depend on charge storage in the electrode/electrolyte interfacial double layer. Carbonaceous material for double layer capacitor can be obtained from carbon powder, fiber, film and porous carbon sheet. The capacitance of electrodes using an activated carbon was influenced by a filling density of the carbon, thickness and internal resistance of the electrode. In this study. to reduce internal resistance and increase electric conductivity of the electrode. activated carbon/carbon(AC/C) composite electrode was fabricated. The capacitors which have energy densities of 68F/g(at $30^{\circ}C$), 109F/g(at $60^{\circ}C$) and $68F/cm^3$(at $30^{\circ}C$), $111F/cm^3$(at $60^{\circ}C$) were fabricated by using AC/C composite electrodes.

  • PDF

Effect of Composite Conductor on Characteristics of Electric Double Layer Capacitor (전기이중층 커패시터의 특성에 미치는 혼성 도전재의 영향)

  • 김익준;이선영;문성인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.107-111
    • /
    • 2004
  • This work describes the effect of composite conductor on the characteristics of electric double layer capacitor. Test cell, which was fabricated with conducting composite consisted of 80% of SPB and 20% of VGCF, exhibits the better tate capability and the lower resistance than those of the cells fabricated with single electronic conductor. These enhanced properties could be related with the decrease of contact resistance between the activated carbon powders.

Application of Ionic Liquids Based on 1-Ethyl-3-Methylimidazolium Cation and Fluoroanions to Double-Layer Capacitors

  • Ue, Makoto;Takeda, Masayuki
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.192-196
    • /
    • 2002
  • Ionic liquids based on l-ethyl-3-methylimidazolium cation $(EMI^+)$ and inorganic or organic anions containing fluorine atoms were applied to electrolyte materials for double-layer capacitors. The double-layer capacitors composed of a pair of activated carbon electrodes and an ionic liquid selected from $EMIBF_4,\; EMINbF_6,\;EMITaF_6,\;EMICF_3SO_3,\;EMI(CF_3SO_2)_2N,\;and\;EMI(C_2F_5SO_2)_2N$ showed inferior low-temperature characteristics to those of a conventional nonaqueous electrolyte based on propylene carbonate (PC) solvent. On the other hand, the capacitor using $EMIF{\cdot}2.3HF$ showed excellent low-temperature characteristics due to its high conductivity at low temperatures, however, it had a lower working voltage $(\~2V)$ than the conventional nonaqueous counterpart $(\~3V)$.

Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor (전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향)

  • Kim, Jieun;Kwon, Young-Kab;Lee, Joong Kee;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/desorption of charges in the electrolyte on the surface of ACs.

Study of Back-Up Electric Power Source as a Role for Instant Power Industry Safety by Super Capacitor (순간 정전시 산업안전용 보조전원 역할의 Super Capacitor에 관한 연구)

  • 김상길;김종철;허진우;김경민;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.345-354
    • /
    • 1999
  • A new type of capacitor named "Super Capacitor" has been developed, in which the properties of electric double layer formed at the interface of activated carbon electrode- liquid organic electrolyte is applied. This capacitor is small In size, light in weight, wide In temperature range(-25~$70^{\circ}C$), large in charge-discharge capability and good in voltage preservation. And this super capacitor is applied as a power back-up for electricity failure in volatile memory devices etc., a power source for a short time and a power source for operating actuators. At present the development of high power back-up types of the capacitor system and improvement of their characteristics are being actively conducted in order to find wider applications.lications.

  • PDF

Reducing Standby Power Consumption System by Monitoring the AC Input Current for the AV Devices (AV 기기를 위한 AC 입력 전류 모니터링 대기 전력 저감 시스템)

  • Lee, Dae Sik;Yi, Kang Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1493-1496
    • /
    • 2016
  • This paper proposes a system for reducing the standby power consumption in using the consumer electronic devices such as a television, a home theater, a set-top box, or a DVD player. The system is consisted of a flyback converter, monitoring circuits, a relay and a micro-processor. The proposed system can reduce the standby power consumption by disconnecting the AC input and the consumer devices can be turned on with a remote control. The proposed standby power system consumes the low power to receive the infrared signal from the remote controller. Furthermore, a electronic double layer capacitor is used to store the energy with high efficiency. The proposed power system can operate the 플라이백 converter to charge the electronic double layer capacitor and connect the AC input to the consumer electronic devices. The proposed power circuit can reduce the standby power consumption in AV devices without increasing the cost. The prototype is implemented to verify the system with the commercialized products.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

An Overview of the Activated Carbon Fibers for Electrochemical Applications

  • Lee Gyoung-Ja;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • This article is concerned with the overview of the activated carbon fibers. Firstly, this review provides a comprehensive survey of the overall processes for the synthesis of the activated carbon fibers from the carbonaceous materials. Subsequently, the physicochemical properties such as pore structures and surface oxygen functional groups of the activated carbon fibers were discussed in detail. Finally, as electrochemical applications of the activated carbon fibers to electrode materials for electric double-layer capacitor (EDLC), the electrochemical characteristics of the activated carbon fiber electrodes and the various methods to improve the capacitance and rate capability were introduced. In particular, the effect of pore length distribution (PLD) on kinetics of double-layer charging/discharging was discussed based upon the experimental and theoretical results in our work. And then we discussed in detail the applications of the activated carbon fibers to adsorbent materials for purification of liquid and gas.

The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy (전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo;In, Su-Il;Kim, Jong-Duk
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.