• Title/Summary/Keyword: dose of off-site residents

Search Result 5, Processing Time 0.015 seconds

The Comparison on Treatment Method of Liquid Radioactive Waste in Yonggwang #3&4 and #5&6 (영광 3&4와 5&6호기에서 액체 방사성폐기물 처리방법의 비교)

  • Yeom, Yu-Seon;Kim, Soong-Pyung;Lee, Seung-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.219-230
    • /
    • 2004
  • Most of the low-level liquid radioactive wastes generated from PWR plants are classified into high or low total suspended solid(HTDS or LTDS), and into radiochemical and radioactive laundry waste. Although the evaporation process has a high decontami- nation ability, it has several problems such as corrosion, foam, and congestion. A new liquid waste disposal process using the ion-exchange demineralizer(IED), instead of the current evaporation process, has been introduced into the Yonggwang NPP #5 and 6. These two methods have been compared to understand the differences in this study. Aspects compared here were the released radioactivity amount of the liquid radioactive wastes, the dose of off-site residents, the decontamination factor, and the amount of the solid radioactive wastes. The IED system is designed to discharge higher radioactivity about 20% than the evaporating system, and the actual radioactivity released from the evaporating and IED system were 0.473mCi and 1.098mCi, respectively. The radioactivity released from the IED was 2.32 times higher than that of the evaporating system. The dose of off-site residents was $2.97{\times}10^{-6}$mSv for the evaporating system, and $6.47{\times}10^{-6}$mSv for IED. The decontamination factor(DF) of the evaporator is, in most cases, far lower than the lower limits of detection(LLD) with the Ge-Li detector. Due to the low concentration of the liquid wastes collected from the liquid waste system, the decontamination factor of IED is very low. Since there is not enough data on the amount of solid radioactive wastes generated by the evaporation system, the comparison on these two systems has been conducted on the basis of the design, and the comparison result was that the evaporating system generated more wastes about 40% than IED.

  • PDF

The Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, with a Focus on the Precautionary Action Zone

  • Lee, Janghee;Jeong, Jae Jun;Shin, Wonki;Song, Eunyoung;Cho, Cheolwoo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.196-205
    • /
    • 2016
  • Background: The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. Materials and Methods: The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. Results and Discussion: According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to $10mSv{\cdot}h^{-1}$ of radiation at the Exclusion Area Boundaries (EAB) boundary and $4-6mSv{\cdot}h^{-1}$ at the PAZ boundary. Conclusion: It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.

A Study on the Effect of Containment Filtered Venting System to Off-site under Severe Accident (중대사고시 격납건물여과배기계통(CFVS)적용으로 인한 사고영향과 결과 고찰)

  • Jeon, Ju Young;Kwon, Tae-Eun;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.244-251
    • /
    • 2015
  • The containment filtered venting system reduces the range of the contamination area around the nuclear power plant by strengthening the integrity of the containment building. In this study, the probabilistic assessment code MACCS2 was used to assess the effect of the CFVS to off-site. The accident source term was selected from a Probabilistic Safety Analysis report of SHINKORI 1&2 Nuclear Power Plant. The three source term categories from 19 STC were chosen to evaluate the effective dose and thyroid dose of residents around the power plant and the dose with CFVS and without CFVS were compared. The dose was calculated according to the distance from the nuclear power plant, so the damage scale based on the distance that exceeds the IAEA criteria for effective dose (100 mSv per 7 days) and thyroid dose (50 mSv per 7 days) were compared. The effective dose reduction rates of the STC-3, STC-4, STC-6 were about 95-99% in the whole range (0~35 km), 96-98% for the thyroid dose. There are similar results between effective dose and thyroid dose. After applying the CFVS, the damage scale that exceeds the effective dose criteria was about 1 km (mean). Especially, the STC-4 damage scale was decreased from 26 km (mean) to 1.2 km (mean) significantly. The damage scale that exceed the thyroid dose criteria was decreased to 2~3 km (mean). The STC-4 damage scale was also decreased significantly as compared to STC-3, STC-6 in terms of effective dose.

Preparation of Radiological Environmental Impact Assessment for the Decommissioning of Nuclear Power Plant in Korea (국내 원전 해체시 방사선환경영향평가 방안)

  • Lee, Sang-Ho;Seo, Hyung-Woo;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.107-122
    • /
    • 2018
  • Kori unit 1, the oldest commercial nuclear power plant in South Korea, was permanently shut down in June 2017. There are a lot of things to consider in decommissioning nuclear power plants, and one of them is the radiological environmental impact assessment. Performed to promote the health and safety of residents around the nuclear power plant, radiological environmental impact assessment aims to confirm that off-site radiological dose from radioactive material released from the facility does not exceed the regulatory criteria. There are three main parts of environmental impact assessment: pre-decommissioning environmental monitoring, environmental monitoring during decommissioning, and impact on nearby residents. At present, although the Korea Nuclear Safety Act stipulates that radiological environmental impact assessment resulting from decommissioning should be carried out, the details have not been specified. Therefore, this paper compares and analyzes guidelines for evaluation of radiological environmental impacts of nuclear power plants overseas, and presents a draft on the assessment of radiological dose resulting from decommissioning according to the Korean situation.

Analysis of Minimum Detectable Activity Concentration of Water Samples and Evaluation of Effective Dose (물 시료의 최소검출가능 농도 분석과 유효선량 평가)

  • Jang, Eun-sung;Kim, Yang-su;Lee, Sun-young;Kim, Jung-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.857-862
    • /
    • 2020
  • In March 2011, a tsunami off Japan caused radioactive material that had seeped into the sea from the Fukushima nuclear accident to flow to the Pacific Ocean, causing pollution to sea life. For a comparative evaluation with the area surrounding the site of a nuclear power plant by the release of radioactive materials, an area 20 to 30 km away from the emergency protection plan area was selected as a comparative point considering weather conditions, population distribution, etc. In addition, the government intends to analyze the minimum detection radiation received by residents around the nuclear power plant and evaluate the effective dose. Analysis of tritium radiation from water samples showed that most of the samples were not detected and that 0.0014 % to 0.777 % of the annual legal standard of 1 mSv for the general public had little effect on the human body. Therefore, the measurement and analysis of water samples around the nuclear power plant site is expected to help relieve anxiety, such as exposure to the general public and neighboring residents due to radiation release.