• Title/Summary/Keyword: dose distribution characteristic

Search Result 28, Processing Time 0.02 seconds

Radiation Dose Comparison according to Different Organ Characteristics at Same Scan Parameters Using CareDose 4D: An Adult and Pediatric Phantom Evaluation (CareDose 4D 사용 시 동일한 스캔조건에서 조직기반설정을 다르게 적용함에 따른 선량 비교: 성인과 소아팬텀 연구)

  • Kong, Hyo-Geum;Lee, Ki-Baek
    • Journal of radiological science and technology
    • /
    • v.42 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • CareDose 4D which is the Siemens's Automatic Exposure Control (AEC) can adjust the level of radiation dose distribution which is based on organ characteristic unlike other manufacturer's AEC. Currently, a wide scan range containing different organs is sometimes examined at once (defined as one scan). The purpose of this study was to figure out which organ characteristic option is suitable when one scan method is utilized. Two types of anthropomorphic phantoms were scanned in the same range which were from frontal bone to carina level according to three different organ characteristics such as Thorax, Abdomen, and Neck. All scans and image reconstruction parameters were equally applied and radiation dose were compared. Radiation dose with Thorax organ characteristic was lower than that with Neck. Also, that with Abdomen oran characteristic was lower than Thorax. There were significant differences in radiation dose according to different organ characteristics at the same parameters (P<0.05). Usage of Neck organ characteristic had a result of the highest radiation dose to all phantom. On the other hand, utilization of Abdomen organ characteristic showed the lowest radiation dose. As a result, it is desirable to set appropriate organ characteristic according to examined body part when you checkup patients. Also, when you implement one scan method, selection of Abdomen-based organ characteristic has reduced more radiation dose compared with two different organ characteristic.

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Dosimetric Analysis on the Effect of Target Motion in the Delivery of Conventional IMRT, RapidArc and Tomotherapy

  • Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.164-170
    • /
    • 2017
  • One of the methods to consider the effect of respiratory motion of a tumor target in radiotherapy is to establish a treatment plan with the internal target volume (ITV) created based on an accurate analysis of the target motion displacement. When this method is applied to intensity modulated radiotherapy (IMRT), it is expected to yield a different treatment dose distribution under the motion condition according to the IMRT method. In this study, we prepared ITV-based IMRT plans with conventional IMRT using fixed gantry angle beams, RapidArc using volumetric modulated arc therapy, and tomotherapy using helical therapy. Then, the variation in dose distribution caused by the target motion was analyzed by the dose measurement in the actual motion condition. A delivery quality assurance plan was prepared for the established IMRT plan and the dose distribution in the actual motion condition was measured and analyzed using a two-dimensional diode detector placed on a moving phantom capable of simulating breathing movements. The dose measurement was performed considering only a uniform target shape and motion in the superior-inferior (SI) direction. In this condition, it was confirmed that the error of the dose distribution due to the target motion is minimum in tomotherapy. This is thought to be due to the characteristic of tomotherapy that treats the target sequentially by dividing it into several slices. When the target shape is uniform and the main target motion direction is SI, it is considered that tomotherapy for the ITV-based IMRT method has a characteristic which can reduce the dose difference compared with the plan dose under the target motion condition.

Search of Characteristic for Dose Distribution Presented by Multi­isocentric Stereotactic Radiosurgical Plan Using Linear Accelerator (선형 가속기를 이용한 정위적 방사선 수술시 병소내 선량분포의 특성조사)

  • 최경식;오승종;이형구;최보영;전흥재;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.225-233
    • /
    • 2003
  • The goal of a radiation treatment plan is to deliver a homogeneous dose to a target with minimal irradiation of the adjacent normal tissues. Dose uniformity is especially important for stereotactic radiosurgery using a linear accelerator. The dose uniformity and high dose delivery of a single spherical dose distribution exceed 70%. This also results with a similar stereotactic radiosurgical plan using a Gamma Knife. The dose distribution produced in a stereotactic radiosurgical plan using a Gamma Knife and Linear accelerator is spherical, and the application of the sphere packing arrangement in a real radiosurgical plan requires much time and skill. In this study, we found a characteristic of dose distribution with transformation of beam parameters that must be considered in a radiosurgical plan for effective radiosurgery. First, we assumed a cylinder type tumor model and a cube type tumor model. Secondly, the results of the tumor models were compared and analyzed with dose profiles and DVH_(Dose Volume Histogram) representative dose distribution. We found the optimal composition of beam parameters_(i.e. collimator size, number of isocenter, gap of isocenters etc.), which allowed the tumor models to be involved in the isodose curve at a high level. In conclusion, the characteristics found in this study are helpful for improving the effectiveness and speed of a radiosurgical plan for stereotactic radiosurgery.

  • PDF

The Characteristic of Temperature and Dose Distribution of intra oral X-ray Tube (강내형 X선 튜브 온도 및 선량 분포 특성)

  • Cho, Sungho;Lee, Rena
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.262-266
    • /
    • 2013
  • A new concept of periapical radiography, intra oral x-ray tube and detector system is introduced. It is new system that a miniature x-ray tube is inserted into mouse and it acquired digital image using external detector. In this study, we have investigated temperature and dose distribution of insertional x-ray tube for periapical radiography. To analyze temperature characteristic of x-ray tube, we attached the thermocouple to surface of x-ray tube and we measured the temperature according to distance. Also, we measured the dose distribution of a miniature x-ray tube according to distance. As a result, temperature was constant to $27^{\circ}C$ over 2mm without cooling system, dose distribution of x-ray tube was 3.14 and 1.84mGy in 3 and 5cm, respectively. Therefore, the proposed x-ray system works in lower dose than conventional dental x-ray system. Thus, it is considered that new concept of system will have a significant effect on medical imaging technology.

The Measurement and Analysis by Free Space Scatter Dose Distribution of Diagnostic Radiology Mobile Examination Area (영상의학과 이동검사 영역의 공간선량 분포에 대한 측정 및 분석)

  • Kim, Sung-Kyu;Son, Sang-Hyuk
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • There are several reasons to take X-ray in case of inpatients. Some of them who cannot ambulate or have any risk if move are taken portable X-ray at their wards. Usually, in this case, many other people-patients unneeded X-ray test, family, hospital workers etc-are indirectly exposed to X-ray by scatter ray. For that reason I try to be aware of free space scatter dose accurately and make the point at issue of portable X-ray better in this study. kVp dose meter is used for efficiency management of portable X-ray equipment. Mobile X-ray equipment, ionization chamber, electrometer, solid water phantom are used for measuring of free space scatter dose. First of all the same surroundings condition is made as taken real portable X-ray, inquired amount of X-ray both chest AP and abdomen AP most frequently examined and measured scatter ray distribution of two tests individually changing distance. In the result of measuring horizontal distribution with condition of chest AP it is found that the mAs is decreased as law of distance reverse square but no showed mAs change according to direction. Vertical distribution showed the mAs slightly higher than horizontal distribution but it isnt found out statistical characteristic. In abdomen AP, compare with chest AP, free space scatter dose is as higher as five-hundred times and horizontal, vertical distribution are quite similar to chest AP in result. In portable X-ray test, in order to reduce the secondary exposure by free space scatter dose first, cut down unnecessary portable order the second, set up the specific area at individual ward for the test the third, when moving to a ward for the X-ray test prepare a portable shielding screen. The last, expose about 2m apart from patients if unable to do above three ways.

  • PDF

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.

Comparison of Temperature Distribution in Agar Phantom and Gel Bolus Phantom by Radiofrequency Hyperthermia

  • Jung, Dong Kyung;Kim, Sung Kyu;Lee, Joon Ha;Youn, Sang Mo;Kim, Hyung Dong;Oh, Se An;Park, Jae Won;Yea, Ji Won
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.224-231
    • /
    • 2016
  • The usefulness of Gel Bolus phantom was investigated by comparing the temperature distribution characteristic of the agar phantom produced to investigate the dose distribution characteristic of radiofrequency hyperthermia device with that of the Gel Bolus phantom under conditions similar to those of an agar phantom that can continuously carry out temperature measurement. The temperatures of the agar phantom and the Gel Bolus phantom were raised to $36.5{\pm}3^{\circ}C$ and a temperature sensing was inserted at depths of 5, 10, and 15 cm from the phantom central axis. The temperature increase rate and the coefficient of determination were analyzed while applying output powers of 100 W and 150 W, respectively, at intervals of 1 min for 60 min under conditions where the indoor temperature was in the range $24.5{\sim}27.5^{\circ}C$, humidity was 35~40%, internal cooling temperature of the electrode was $20^{\circ}C$, size of the upper electrode was 250 mm, and the size of the lower electrode was 250 mm. The coefficients of determination of 150 W output power at the depth point of 5 cm from the central axis of the phantom were analyzed to be 0.9946 and 0.9926 in the agar and Gel Bolus phantoms, respectively; moreover, the temperature change equation of the agar and Gel Bolus phantoms with time can be expressed as follows in the state the phantom temperature is raised to $36^{\circ}C:Y(G)$ is equation of Gel Bolus phantoms (in 5 cm depth) applying output power of 150 W. Y(G)=0.157X+36. It can be seen that if the temperature is measured in this case, the Gel Bolus phantom value can be converted to the measured value of the agar phantom. As a result of comparing the temperature distribution characteristics of the agar phantom of a human-body-equivalent material with those of the Gel Bolus phantom that can be continuously used, the usefulness of Gel Bolus phantom was exhibited.

The Development of a Multi-Purpose Irradiator and the Characteristic of Dose Distribution (다목적 방사선 조사장치 개발 및 선량분포특성)

  • Lee, Dong-Hoon;Ji, Young-Hoon;Lee, Dong-Han;Kim, Yoon-Jong;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.42-48
    • /
    • 2002
  • The design, construction and performance test of a convenient multi-purpose irradiator is described. A multi-purpose irradiator using Cesium-137 has been developed for studies of low dose radiation effects in biology and for calibration of Thermo Luminescent dosimeter(TLD). During the operation, three rods of radioactive material which are 10cm in length revolve 180 degrees and irradiate biological samples, or TLD, and return to their shielded position, after the programmed time. A programmable Logic Controller(PLC) controls the sequence of operation, interlock, motor rotation and safety system. The rotation speed of biological samples can vary up to 20 RPM. A real time monitoring system was also incorporated to check and control the operation status of the irradiator. The capacity of the irradiation chamber was 4.5 liters. The isodose distribution at arbitrary vertical planes was measured by using film dosimetry. The dose-rate was 0.13 cGy/min in air and 0.11 cGy/min in water equivalent material in the case of Cesium-137. Range of activity was 2 Ci. The homogeneity of dose distribution in the chamber was ${\pm}$7%. The actual radiation level on the surface was within permissible levels. The irradiator had a maximum 0.35 mR/min radiation leakage on its surface.