• Title/Summary/Keyword: doppler frequency

Search Result 554, Processing Time 0.027 seconds

A New Mean Frequency Extension Method in Doppler System (초음파 도플러 시스템에서 새로운 평균 주파수 확장 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • The use of ultrasound pulsed Doppler systems has become increasingly popular due to the advantages of easy measurements of blood velocity, volume blood blow, and irregularities of the circulatory system. However, the 2-D Doppler systems have several problems, such as range ambiguity, low signal to noise ratio, and slow frame rate. The mean frequency aliasing problem originating from the pulse repetition frequency is one of major limitations in pulsed Doppler systems. A conventional approach to resolve this problem is tracking the mean frequency close to and beyond the Nyquist frequency along the temporal axis. In this paper, a new concept of tracking the mean frequency along the spatial axis is proposed. The proposed technique is fault tolerant by nature and more suitable for multi gate and 2-D Doppler system than conventional methods.

  • PDF

Time-Frequency Analysis of the Doppler Signals by Moving Targets (이동 표적에 의한 도플러 신호의 시간-주파수 분석)

  • Son, Joong-Tak;Lee, Seung-Houn;Park, Kil-Houm
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.38-48
    • /
    • 2005
  • Instantaneous frequency of doppler signals is used to get the information of the relative velocity and the miss distance between a missile and a corresponding target. In this paper, we have performed time-frequency analysis and instantaneous frequency estimation with Short Time Fourier Transform(STFT), Wigner Ville Distribution(WVD) and Continuous Wavelet Transform(CWT) about the doppler signals generated by moving targets. Performance evaluation was performed using simulated doppler signals generated by a single moving target and two moving targets. From the results of the time-frequency analysis, we found that WVD method was the most efficient instantaneous frequency estimator among the three methods. But in case of two moving targets, WVD method got cross talks and CWT method got oscillation when two doppler frequencies were close to each other.

Decision Feedback Doppler Adaptive Band-Limit Algorithm for Maximum Doppler frequency Estimation (속도 추정 시 부가 잡음의 영향을 억제하기 위한 결정 궤환 적응형 대역 제한 방법에 대한 연구)

  • 박구현;한상철;류탁기;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1111-1117
    • /
    • 2003
  • The maximum Doppler frequency, or equivalently, the mobile speed is very useful information to optimize the performance of many wireless communication systems. However, the performance of a maximum Doppler frequency estimator is limited since it requires an estimate of the signal-to-noise ratio (SNR) of the channel environment. In this paper, the improved method for the maximum Doppler frequency estimations based on the decision feedback Doppler adaptive band-limit (DF-DABL) method is proposed. To reduce the effect of additive noise, the proposed algorithm uses a novel Doppler adaptive band-limit (DABL) technique. The distortion due to the additive noise is drastically removed by the proposed DF-DABL method. Especially, the DF-DABL method does not need any other channel information such as SNR.

Laser Doppler Velocimetry Using the Photoacoustic Effect of $CO_2$ Laser (광음향 효과를 이용한 $CO_2$ 레이저 도플러 속도 측정기)

  • 최종운;유문종
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • A new laser Doppler velocimeter employing a $CO_2$ laser has been developed by using its photoacoustic effect. A change in the pressure of a discharge, induced by mixing of a returned wave with an originally existing wave inside the cavity, is employed to detect the Doppler frequency shift. We found that a Doppler frequency shift as much as 34 KHz was detected, and also a good linear relationship between the velocity and the Doppler frequency shift was obtained.

A Study on the Performance Analysis of Pulse Repetition Frequency Jitter Compensation for Generating Doppler Profile (도플러 프로파일 생성을 위한 펄스 반복주파수 지터 보상 성능분석에 대한 연구)

  • Lee, Jung-Won;Hwang, Kyu Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2020
  • This paper proposes a method on the performance analysis of pulse repetition frequency jitter compensation for generating Doppler profile. Exact phase compensation of each pulse is required to obtain Doppler profiles under pulse repetition frequency jitter. Three parameters such as velocity, pulse repetition frequency, and carrier frequency are examined to cause errors when conducting the pulse repetition frequency jitter compensation, then assuming well-focused Doppler profiles reflect well-conducted pulse repetition frequency jitter compensation, the proposed method in this paper utilizes the contrast to measure how well Doppler profile is generated. These are validated by electromagnetic computation data and computer simulation. Then, it is concluded which parameter is important on the performance analysis of pulse repetition frequency jitter compensation by using the contrast.

Ocean Surface Current Retrieval Using Doppler Centroid of ERS-1 Raw SAR Data

  • Kim Ji-Eun;Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.590-593
    • /
    • 2004
  • Extraction of ocean surface current velocity offers important physical oceanographic parameters especially on understanding ocean environment. Although Remote Sensing techniques were highly developed, the investigation of ocean surface current using Synthetic Aperture Radar (SAR) is not an easy task. This paper presents the results of ocean surface current observation using Doppler Centroid of ERS-1 SAR data obtained off the coast of Korea peninsula. We employed the concept, in which Doppler frequency shift and the ocean surface current are closely related, to evaluate ocean surface current. Moving targets cause Doppler frequency shift of the back scattered radar waves of SAR, thus the line-of-sight velocity component of the scatters can be evaluated. The Doppler frequency shift can be measured by estimating the difference between Doppler Centroid of raw SAR data and reference Doppler Centroid. Theoretically, the Doppler Centroid is zero; however, squinted antenna which is affected by several physical factors causes Doppler Centroid to be nonzero. The reference Doppler Centroid can be obtained from measurements of sensor trajectory, attitude and Earth model. The estimated Doppler Centroid was compensated by considering the accurate attitude estimation of ERS-1 SAR. We could verify the correspondence between the estimated ocean surface current and observed in-situ data in the error bound.

  • PDF

Audio Processing Algorithm Using Base Line Shift Method in Pulsed Doppler Systems (PW 도플러 시스템에서 Base Line 이동 기법을 이용한 오디오 신호 처리 방법)

  • 김기덕;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.275-281
    • /
    • 1999
  • Conventional PW Doppler systems suffer from the ambiguity of measured blood velocities due to the spectrum aliasing when the corresponding Doppler frequencies are greater than the Nyquist frequency. Base-line shift is a customary method for dealiasing the Doppler spectrums. I lowever, Doppler audio signals still remain unchanged even when the base-line shift method is applied. This paper de scribes an method for dealiasing both the Doppler spectra and audio signals by using sampling rate expansion, frequency shifting, and filtering poerations. For undirectional flows, the method can increase the maximum detectable Doppler frequency from the Nyquist limit of one-half of the Pulse Repetition Frequency(PRF) to the PRF. Experiments with real data have been performed to verify the proposed method.

  • PDF

The Relative Position Estimate of the Moving Distributed Sources Using the Doppler Scanning Technique (도플러 스캐닝 기법을 이용한 이동하는 다중 음원의 상대 위치 추적 기법)

  • 노용주;윤종락;전재진
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.446-454
    • /
    • 2002
  • This paper presents the Doppler Scanning technique which enables us to detect the relative positions of moving distributed sources using Doppler frequency shift estimate when the moving source consists of distributed sources with different signature frequencies. Doppler frequency shifts of characteristic frequencies of machinery noise sources such as ship's generator and propeller, with tine along CPA (Closest Point of Approach of moving source) are unique, and can be functioned with respect to each source position. Therefore, this technique can be applied to estimate the relative geometrical positions between machinery noise sources. The Extended Kalman Filter (EKF) which has a high frequency resolution with high time resolution, is adopted for improving accuracy of Doppler frequency shift estimate geometric resolution of machinery positions since machinery noise sources show in general low frequency band characteristics with limited spacial distance. The performance of the technique is examined by the numerical simulations and is verified by the experiment using loudspeaker sources on the roof of the car.

A Study On The Doppler Radar Of Range Measurement On Electro-Optical Tracking System (광학추적장비의 거리측정 도플러 레이더에 관한 연구)

  • Park, Doo-Jin;Noh, Young-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.700-702
    • /
    • 2016
  • The Doppler Radar that mounted on Electro Optical Tracking System has been operated to measure range and velocity during the initial mission of space launch vehicle at Naro space center. In this paper, we mentioned configuration of MFCW(Multi frequency Continuous Wave) and FMCW(Frequency Modulation Continuous Wave) Doppler Radar on Electro Optical Tracking System and described method of range measurement.

  • PDF

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF