• Title/Summary/Keyword: doped ZnS

Search Result 216, Processing Time 0.033 seconds

A Study on Characteristics of ZnO/n-Si Low Cost Solar Cells (ZnO/n-Si 저가 박막태양전지의 특성연구)

  • Baik, D.G.;Cho, S.M.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • ZnO/n-Si junctions were fabricated by spin coating with ZnO precursor produced by the sol-gel process. In order to increase the electrical conductivity of ZnO films, the films were n-doped with Al impurity and subsequently annealed at about $450^{\circ}C$ under reducing environments. The ohmic contacts between n-Si and AI for a bottom electrode were successfully fabricated by doping the rear surface of Si substrate with phosphorous atoms. The front surface of the substrate was also doped with phosphorous atoms for improving the efficiency of the solar cells. Consequently, conversion efficiencies ranging up to about 5.3% were obtained. These efficiencies were found to decrease slowly with time because of the oxide films formed at the ZnO/Si interface upon oxygen penetration through the porous ZnO. Oxygen barrier layers could be necessary in order to prevent the reduction of conversion efficiencies.

  • PDF

Luminescence of orange-emitting ZnS:Mn,Cu,Cl for EL device

  • Lee, Hak-Soo;Han, Sang-Do;Gwak, Ji-Hye;Han, Chi-Hwan;Kim, Jung-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1093-1095
    • /
    • 2006
  • An orange-emitting phosphor for inorganic electroluminescent device has been studied. Cu and Cl were co-doped in Mn-doped ZnS for a high-performing phosphor. The effect of $Mn^{2+}-doping$ concentration as well as $Mg^{2+}-sensitizer$ addition on the luminescence characteristics has been investigated.

  • PDF

Effects of strain on the optical and magnetic properties of Ce-doped ZnO

  • Xu, Zhenchao;Hou, Qingyu;Guo, Feng;Jia, Xiaofang;Li, Cong;Li, Wenling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1465-1472
    • /
    • 2018
  • The magnetic and optical properties of Ce-doped ZnO systems have been widely demonstrated, but the effects of different strains of Ce-doped ZnO systems remain unclear. To solve these problems, this study identified the effects of biaxial strain on the electronic structure, absorption spectrum, and magnetic properties of Ce-doped ZnO systems by using a generalized gradient approximation + U (GGA + U) method with plane wave pseudopotential. Under unstrained conditions, the formation energy decreased, the system became stable, and the doping process became easy with the increase in the distances between two Ce atoms. The band gap of the systems with different strains became narrower than that of undoped ZnO without strain, and the absorption spectra showed a red shift. The band gap narrowed, and the red shift became weak with the increase of compressive strain. By contrast, the band gap widened, and the red shift became significant with the increase of tensile strain. The red shift was significant when the tensile strain was 3%. The systems with -1%, 0%, and 1% strains were ferromagnetic. For the first time, the magnetic moment of the system with -1% strain was found to be the largest, and the system showed the greatest beneficial value for diluted magnetic semiconductors. The systems with -3%, -2%, 2%, and 3% strains were non-magnetic, and they had no value for diluted magnetic semiconductors. The ferromagnetism of the system with -1% strain was mainly caused by the hybrid coupling of Ce-4f, Ce-5d, and O-2p orbits. This finding was consistent with Zener's Ruderman-Kittel-Kasuya-Yosida theory. The results can serve as a reference for the design and preparation of new diluted magnetic semiconductors and optical functional materials.

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.

Control of electrical types in the P-doped ZnO thin film by Ar/$O_2$ gas flow ratio

  • Kim, Young-Yi;Han, Won-Suk;Kong, Bo-Hyun;Cho, Hyung-Koun;Kim, Jun-Ho;Lee, Ho-Seoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.11-11
    • /
    • 2008
  • ZnO has a very large exciton binding energy (60 meV) as well as thermal and chemical stability, which are expected to allow efficient excitonic emission, even at room temperature. ZnO based electronic devices have attracted increasing interest as the backplanes for applications in the next-generation displays, such as active-matrix liquid crystal displays (AMLCDs) and active-matrix organic light emitting diodes (AMOLEDs), and in solid state lighting systems as a substitution for GaN based light emitting diodes (LEDs). Most of these electronic devices employ the electrical behavior of n-type semiconducting active oxides due to the difficulty in obtaining a p-type film with long-term stability and high performance. p-type ZnO films can be produced by substituting group V elements (N, P, and As) for the O sites or group I elements (Li, Na, and K) for Zn sites. However, the achievement of p-type ZnO is a difficult task due to self-compensation induced from intrinsic donor defects, such as O vacancies (Vo) and Zn interstitials ($Zn_i$), or an unintentional extrinsic donor such as H. Phosphorus (P) doped ZnO thin films were grown on c-sapphire substrates by radio frequency magnetron sputtering with various Ar/ $O_2$ gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio with out post-annealing. The P-doped ZnO films grown at a Ar/ $O_2$ ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of $10^{-17}cm^{-3}$ and $2.5cm^2/V{\cdot}s$, respectively. X-ray diffraction showed that the ZnO (0002) peak shifted to lower angle due to the positioning of $p^{3-}$ ions with a smaller ionic radius in the $O^{2-}$ sites. This indicates that a p-type mechanism was due to the substitutional Po. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction LEO showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.

  • PDF

Deposition of B-doped ZnO Thin Films by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학기상 증착법에 의한 B이 첨가된 ZnO 박막의 증착에 관한 연구)

  • Choe, Jun-Yeong;Jo, Hae-Seok;Kim, Yeong-Jin;Lee, Yong-Ui;Kim, Hyeon-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.568-574
    • /
    • 1995
  • We investigated the effects of B-doping on the growth mechanism of ZnO films. The B-doped ZnO films, which were widely applied for transparent conducting electrode, were deposited by plasma enhanced chemcial vapor depostion(PECVD) using diethylzinc(DEZ), No.sub 2/. and B$_{2}$H$_{6}$. The deposition conditions were a sbustrate temperature of 30$0^{\circ}C$, an rf power of 200, and a chamber pressure of 1 torr. At the given depostion condition, the growth rate of B-doped ZnO thin films was higher than that of undoped ones, but didn't change even with further increasing B$_{2}$H$_{6}$ flow rate and the interplanar distance between(0002) planes was reduced as B atoms substituted Zn sites.s.

  • PDF

X-Ray Absorption Spectroscopic Study of 120 MeV $Ag^{9+}$ Ion-Irradiated N-Doped ZnO Thin Films

  • Gautam, Sanjeev;Lim, Weon Cheol;Kang, Hee Kyung;Lee, Ki Soo;Song, Jaebong;Song, Jonghan;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.315-315
    • /
    • 2013
  • We report the electronic structure modification in the swift heavy ion (SHI) irradiated N-doped ZnO thin films prepared by RF sputtering from ZnO target in different ratio of Ar/$N_2$ gas mixture using highly pure $N_2$ gas. The different N-ZnO thin lms were then irradiated with 120 MeV Ag ion beam with different doses ranging from $1{\times}10^{11}$ to $5{\times}10^{12}$ ions/$cm^2$ and characterized by XRD and near edge X-ray absorption ne structure (NEXAFS) at N and O K-edges. The NEXAFS measurements provide direct evidence of O 2p and Zn 3d orbital hybridization and also the bonding of N ions with Zn and O ions. The minimum value of resistivity of $790{\Omega}cm$, a Hall mobility of $22cm^2V^-1s^-1$ and the carrier concentration of $3.6{\times}10^{14}cm^{-3}$ were yielded at 75% $N_2$. X-ray diffraction (XRD) measurements revealed that N-doped ZnO films had the preferential orientation of (002) plane for all samples, while crystallinity start decreasing at 32.5% $N_2$. The average crystallite size varies from 5.7 to 8.2 nm for 75% and then decreases to 7.8 nm for 80% $Ar:N_2$ ratio.

  • PDF

W 도핑된 ZnO 박막을 이용한 저항 변화 메모리 특성 연구

  • Park, So-Yeon;Song, Min-Yeong;Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.410-410
    • /
    • 2013
  • Next-generation nonvolatile memory (NVM) has attracted increasing attention about emerging NVMs such as ferroelectric random access memory, phase-change random access memory, magnetic random access memory and resistance random access memory (RRAM). Previous studies have demonstrated that RRAM is promising because of its excellent properties, including simple structure, high speed and high density integration. Many research groups have reported a lot of metal oxides as resistive materials like TiO2, NiO, SrTiO3 and ZnO [1]. Among them, the ZnO-based film is one of the most promising materials for RRAM because of its good switching characteristics, reliability and high transparency [2]. However, in many studies about ZnO-based RRAMs, there was a problem to get lower current level for reducing the operating power dissipation and improving the device reliability such an endurance and an retention time of memory devices. Thus in this paper, we investigated that highly reproducible bipolar resistive switching characteristics of W doped ZnO RRAM device and it showed low resistive switching current level and large ON/OFF ratio. This may be caused by the interdiffusion of the W atoms in the ZnO film, whch serves as dopants, and leakage current would rise resulting in the lowering of current level [3]. In this work, a ZnO film and W doped ZnO film were fabricated on a Si substrate using RF magnetron sputtering from ZnO and W targets at room temperature with Ar gas ambient, and compared their current levels. Compared with the conventional ZnO-based RRAM, the W doped ZnO ReRAM device shows the reduction of reset current from ~$10^{-6}$ A to ~$10^{-9}$ A and large ON/OFF ratio of ~$10^3$ along with self-rectifying characteristic as shown in Fig. 1. In addition, we observed good endurance of $10^3$ times and retention time of $10^4$ s in the W doped ZnO ReRAM device. With this advantageous characteristics, W doped ZnO thin film device is a promising candidates for CMOS compatible and high-density RRAM devices.

  • PDF

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF

V-I Curves of p-ZnO:Al/n-ZnO:Al Junction Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.575-579
    • /
    • 2008
  • Al-doped p-type ZnO films were fabricated on n-Si (100) and homo-buffer layers in pure oxygen at $450^{\circ}C$ of by RF magnetron sputtering. Target was ZnO ceramic mixed with 2 wt% $Al_2O_3$. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure and homo-buffer layers are beneficial to Al-doped ZnO films to grow along c-axis. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are ranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-3}$, mobilities from 0.194 to $2.3\;cm^2V^{-1}s^{-1}$ and resistivities from 7.97 to $18.4\;{\Omega}cm$. p-type sample has density of $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. XPS spectra show that Ols has O-O and Zn-O structures and Al2p has only Al-O structure. P-ZnO:Al/n-ZnO:Al junctions were fabricated by magnetron sputtering. V-I curves show that the p-n junctions have rectifying characteristics.