• Title/Summary/Keyword: dope

Search Result 135, Processing Time 0.025 seconds

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers (교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조)

  • Seo, Young Ho;Oh, Tae Hwan;Han, Sung Soo;Joo, Sang Woo;Khil, Myeong Seob
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.486-493
    • /
    • 2013
  • The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin (𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가)

  • Shin, Sung Ju;Lee, Jong Sung;Lee, Jeong Gil;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.434-442
    • /
    • 2021
  • Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.

Highly Efficient Biogas Upgrading Process Using Polysulfone Hollow Fiber Membrane at Low Temperature (폴리술폰 중공사막을 이용한 바이오가스 고순도화 고효율 저온 분리 공정)

  • Kim, Se Jong;Han, Sang Hoon;Yim, Jin Hyuk;Lee, Chung Seop;Chang, Won Seok;Kim, Gill Jung;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.140-149
    • /
    • 2022
  • In this study, the conditions of low temperature and high pressure of biogas upgrading process using polysulfone membrane have been designed and tested to achieve the high recovery and efficiency corresponding to those of the highly selective polymeric materials. Polysulfone hollow fiber membrane with 4-component dope solution was spun via non-solvent induced phase separation. The hollow fiber membrane was mounted into a 1.5 inch housing. The effective area was 1.6 m2, and its performance was examined in various operation temperatures and pressures. CO2 and CH4 permeances were 412 and 12.7 GPU at 20℃, and 280 and 3.6 GPU at -20℃, respectively, while the CO2/CH4 selectivity increased from 32.4 to 77.8. Single gas test was followed by the mixed gas experiments using single-stage and double stage where the membrane area ratio varied from 1:1 to 1:3. At the single-stage, CH4 purity increased and the recovery decreased as the stage-cut increased. At the double stage, the area ratio of 1:3 showed the higher CH4 recovery as decreasing the operation temperature at the same purity of CH4 97%. Finally, polysulfone hollow fiber membranes have yielded of both CH4 purity and recovery of 97% at -20℃ and 16 barg.

Micropatterning of Polyimide and Liquid Crystal Elastomer Bilayer for Smart Actuator (스마트 액추에이터를 위한 폴리이미드 및 액정 엘라스토머 이중층의 미세패터닝)

  • Yerin Sung;Hyun Seung Choi;Wonseong Song;Vanessa;Yuri Kim;Yeonhae Ryu;Youngjin Kim;Jaemin Im;Dae Seok Kim;Hyun Ho Choi
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.169-274
    • /
    • 2024
  • Recent attention has been drawn to materials that undergo reversible expansion and contraction in response to external stimuli, leading to morphological changes. These materials hold potential applications in various fields including soft robotics, sensors, and artificial muscles. In this study, a novel material capable of responding to high temperatures for protection or encapsulation is proposed. To achieve this, liquid crystal elastomer (LCE) with nematic-isotropic transition properties and polyimide (PI) with high mechanical strength and thermal stability were utilized. To utilize a solution process, a dope solution was synthesized and introduced into micro-printing techniques to develop a two-dimensional pattern of LCE/PI bilayer structures with sub-millimeter widths. The honeycomb-patterned LCE/PI bilayer mesh combined the mechanical strength of PI with the high-temperature contraction behavior of LCE, and selective printing of LCE facilitated deformation in desired directions at high temperatures. Consequently, the functionality of selectively and reversibly encapsulating specific high-temperature materials was achieved. This study suggests potential applications in various actuator fields where functionalities can be implemented across different temperature ranges without the need for electrical energy input, contingent upon molecular changes in LCE.

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).