• 제목/요약/키워드: dopamine receptors

검색결과 132건 처리시간 0.025초

An in Vivo Study of Dopamine Metabolism in Hyperglycemic Rat Striatum

  • Lim, Dong-Koo;Lee, Kyung-Min
    • Archives of Pharmacal Research
    • /
    • 제18권4호
    • /
    • pp.249-255
    • /
    • 1995
  • The changes in the levels of the extracellular dopamine metabolites and the responses to various dopamine agents were studied by using microdialysis inhyperglycemic rat striatum. The hyperglycemia were induced by the administriation of streptozotocin (40 mg/kg, i.p. for 3 days.). The basal levels of striatal dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were significantly decreased in hyperglycemic rat striatum. After the administration ofl D-1 and D-2 receptor antagonists, SCH-23390 and (-)sulpiride, to rats 14 days after the last administration of STZ, the increased rates in DOPAC levels were higher in hyper- than in normoglycemic rats. However, after the administration of dopamine autoeceptor agonist, 3(-)PPP, the levels of the extracellular HVA were increased in normoglycemic rats, but those were not altered in hyperglycemic rats. The results indicate that the striatal dopamine activities were decreased in the hyperglycemic rats and suggest that release of dopamine may be decreased in hyperglycemic rats. Furthermore it suggest that the increase in the levels of the extracellular dopamine metabolites by dopamine antagonists might be dur to the incrrased sensitivities of the dopamine receptors in hyperglycemic state.

  • PDF

Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

  • Baek, Minkyung;Shin, Woong-Hee
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.13-24
    • /
    • 2013
  • Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson's disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.

  • PDF

정신분열병 환자의 도파민 $D_5$ 수용체 유전자형과 치료반응과의 연관 (The Association between the Dopamine $D_5$ Receptor Genotype and Treatment Response for Korean Schizophrenic Patients)

  • 강성민;이민수;이충순
    • 생물정신의학
    • /
    • 제7권2호
    • /
    • pp.159-163
    • /
    • 2000
  • Background : Dopamine receptors are strong candidates for involvement in schizophrenia and are target of a wide variety of antipsychotics. Dopamine $D_5$ receptor(DRD5) gene polymorphisms may be associated with various treatment response. The purpose of our study was define to what significance can be held as a predictor of treatment response in this polymorphism. Method : The total number of 116 Korean chronic schizophrenic patients was assessed after 48 weeks treatment. The Positive and Negative Syndrome Scale(PANSS) was rated for the clinical response to various antipsychotics. With the use of polymerase chain reaction amplification, we assessed this dopamine $D_5$ receptor polymorphism in schizophrenic patients who had been treated with antipsychotics, and related genotype with treatment response, to test the hypothesis that DRD5 polymorphism may lead to varying response to antipsychotics. Result : DRD5 polymorphism was not associated with treatment response to a variety of antipsychotics in chronic schizophrenic patients. Conclusion : Genetic variation of $D_5$ receptors do not predict treatment response to antispychotics.

  • PDF

Role of Helix 8 in Dopamine Receptor Signaling

  • Yang, Han-Sol;Sun, Ningning;Zhao, Xiaodi;Kim, Hee Ryung;Park, Hyun-Ju;Kim, Kyeong-Man;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.514-521
    • /
    • 2019
  • G protein-coupled receptors (GPCRs) are membrane receptors whose agonist-induced dynamic conformational changes trigger heterotrimeric G protein activation, followed by GRK-mediated phosphorylation and arrestin-mediated desensitization. Cytosolic regions of GPCRs have been studied extensively because they are direct contact sites with G proteins, GRKs, and arrestins. Among various cytosolic regions, the role of helix 8 is least understood, although a few studies have suggested that it is involved in G protein activation, receptor localization, and/or internalization. In the present study, we investigated the role of helix 8 in dopamine receptor signaling focusing on dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R). D1R couples exclusively to Gs, whereas D2R couples exclusively to Gi. Bioinformatic analysis implied that the sequences of helix 8 may affect GPCR-G protein coupling selectivity; therefore, we evaluated if swapping helix 8 between D1R and D2R changed G protein selectivity. Our results suggest that helix 8 is not involved in D1R-Gs or D2R-Gi coupling selectivity. Instead, we observed that D1R with D2R helix 8 or D1R with an increased number of hydrophobic residues in helix 8 relative to wild-type showed diminished ${\beta}$-arrestin-mediated desensitization, resulting in increased Gs signaling.

Regulation of Genetic Aggression by Central Dopamine System - Plurality of Dopamine Receptor -

  • Lee, Soon-Chul
    • Archives of Pharmacal Research
    • /
    • 제14권2호
    • /
    • pp.109-113
    • /
    • 1991
  • Two types of aggressive behavior were produced by selective breeding in ICR mimce. NC900 line mice exhibited high level of species-typical, isolation-induced aggression, conversely, NC100 line mice exhibited little aggression. The present study tested the hypothesis that these differences involved brain monoamine systems. Comparisons of microdissected samples from various brain regions showed that NC100 line mice had significantly lower concentrations of dopamine. DOPAC and HVA in the nucleus accumbens (NAB) and caudate nucleus (NCU) than NC900 line. Homogenate binding studies demonstrated that NC100 mice had significantly increased density of $D_1$ dopamine receptor, but not $D_2$ dopamine receptor in the caudate nucleus. These results support the hypothesis that central dopamine pathways play an important role in modulating the genetically selected differences in aggressive behavior, and of which intensity differs from TEX>$D_1$\;and\;$D_2$ dopamine receptors.

  • PDF

Combinatorial modulation of the spontaneous firings by glutamate receptors in dopamine neurons of the rat substantia nigra pars compacta

  • Kim, Shin-Hye;Park, Yu-Mi;Sungkwon Chung;Uhm, Dae-Yong;Park, Myoung-Kyu
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.40-40
    • /
    • 2003
  • Spontaneous firing rate and patterns of dopaminergic neurons in midbrain are key factors in determining the level of dopamine at target loci as well as in the mechanisms such as reward and motor coordination. Although glutamate, as a major afferent, is reported to enhance firing rate, the detailed actions of NMDA-, AMPA/kainate-, and metabotropic glutamate receptors (mGluR) on filing patterns are not clear. Thus we have investigated the role of glutamate receptors on the spontaneous firing activities using the network-free, acutely isolated dopamine neurons from substantia nigra pars compacta(SNc) of the 9-14 days rat. The isolated cells showed spontaneous regular firings of near 2.5 Hz, whose rate was enhanced by glutamate at submicromolar levels (0.3 $\square$M) but abolished by high concentrations more than 10 $\square$M.

  • PDF

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

파킨슨병 모형 흰쥐의 줄무늬체에서 Apomorphine 투여 방법에 따른 도파민 D2 수용체의 발현 (Expression of Dopamine D2 Receptor in Response to Apomorphine Treatment in the Striatum of the Rat with Experimentally Induced Parkinsonism)

  • 최승진;성재훈;손병철;박춘근;권성오;김문찬;이상원
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권7호
    • /
    • pp.868-876
    • /
    • 2000
  • Objective : Parkinsonian rat models have generally been characterized by unilateral destruction of both the nigrostriatal pathway and the mesolimbic pathway using the neurotoxin 6-hydroxydopamine. The induction of contraversive turning by apomorphine in these models is thought to reflect the stimulation of supersensitive dopamine D2 receptor or receptor-mediated mechanisms in denervated neostriatum. The present study was undertaken to investigate the expression of dopamine D2 receptor in denervated striatum according to modalities of apomorphine(dopamine agonist) treatment after creating a hemiparkinsonian rat model in which there is 6-hydroxydopamine induced destruction of the unilateral dopaminergic nigrostriatal pathway. Methods : After making complete lesion in left side substantia nigra pars compacta(SNpc) by stereotactic injection of 6-hydroxydopamine into medial and lateral areas of SNpc, and confirming successful animal model by apomorphine induced contraversive turning behavior without recovery and complete destruction of ipsilateral SNpc with tyrosine hydroxylase immunostaining in 7th day after operation, 15 rats of parkinsonian model were studied with or without administration of apomorphine at varying doses and durations. According to the modalities of apomorphine treatment for 4 days, these rats were divided into 3 groups, as not-treated group, intermittently treated group and constantly treated group. For investigating the extent of the expression of dopamine D2 receptor in denervated striatum, immunohistochemical staining by dopamine D2 receptor antibody and Western blot were performed. Results : In the D2 receptor antibody immunohistochemical staining, the mean number of positive stained neurons was highest in not-treated group($20.5{\pm}1.14$) of 3 groups. In constantly treated group, the mean number of positive stained neurons was less($3.9{\pm}1.79$) than intermittently treated group(p<0.05). The Western blotting with the D2 receptor antibody revealed that expression of receptors was also highest in not-treated group and less in constantiy treated group than intermittently treated group. Conclusion : Dopamine D2 receptors in denervated striatum of parkinsonian rat models, which were not treated with apomorphine, revealed to be most highly expressed. And, according to doses and durations of apomorphine administration, desensitization of the receptor was more apt to develop with constant treatment than intermittent treatment. In clinical setting, the authors believe that, in long-term treated parkinsonian patients, desensitization of dopamine receptors due to chronic dopaminergic stimulation seems to be partially related to mechanisms of drug tolerance.

  • PDF

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • 제26권5호
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Dopamine의 배양근원세포 융합억제 작용 (The Inhibitory Effect of Dopamine on Myoblast Fusion in vitro)

  • Kang, Man-Sik;Song, Woo-Keun;Song, Yung-Kook
    • 한국동물학회지
    • /
    • 제29권4호
    • /
    • pp.235-244
    • /
    • 1986
  • 근세포가 분화하는 과정에 있어서 신경전달물질의 역할을 알아보기 위해서 배양중인 근원세포에 dopamine을 처리하고, 융합지수, creatine kinase 합성률 및 dopamine에 대한 차등감수성을 조사하였다. 배양후 34시간된 근원세포에 $3 \\times 10^{-5} M$의 dopamine을 처리하면 그후 전 시기에 걸쳐 융합지수가 크게 감소되며, 이와 더불어 creatine kinase의 합성률도 감소하는 사실로 미우러 이들 사이에 상관관계가 있음을 알 수 있었다. 또한 dopamine의 융합억제효과는 세포주기에 따라 감수성이 달라지는 차등감수성을 관찰할 수 있었는데, 이는 근세포막에 위치할 것으로 생각되는 dopamine receptor의 배치가 세포주기에 따라 달라지는 데 연유되는 것으로 추정되었다.

  • PDF