• Title/Summary/Keyword: dopamine receptor

Search Result 239, Processing Time 0.025 seconds

Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure-Activity Relationship

  • Dooti Kundu;Anlin Zhu;Eunae Kim;Suresh Paudel;Choon-Gon Jang;Yong Sup Lee;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.108-115
    • /
    • 2023
  • Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DA-induced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.

Classification of Piperazinylalkylisoxazole Library by Recursive Partitioning

  • Kim, Hye-Jung;Park, Woo-Kyu;Cho, Yong-Seo;No, Kyoung-Tai;Koh, Hun-Yeong;Choo, Hyun-Ah;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2008
  • A piperazinylalkylisoxazole library containing 86 compounds was constructed and evaluated for the binding affinities to dopamine (D3) and serotonin (5-HT2A/2C) receptor to develop antipsychotics. Dopamine antagonists (DA) showing selectivity for D3 receptor over the D2 receptor, serotonin antagonists (SA), and serotonin-dopamine dual antagonists (SDA) were identified based on their binding affinity and selectivity. The analogues were divided into three groups of 7 DAs (D3), 33 SAs (5-HT2A/2C), and 46 SDAs (D3 and 5-HT2A/2C). A classification model was generated for identifying structural characteristics of those antagonists with different affinity profiles. On the basis of the results from our previous study, we conducted the generation of the decision trees by the recursive-partitioning (RP) method using Cerius2 2D descriptors, and identified and interpreted the descriptors that discriminate in-house antipsychotic compounds.

Linkage Disequilibrium of Dopamine D2 Receptor Gene in the Korean Population

  • Kang, Byung-Yong;Oh, Sang-Duk;Lee, Kang-Oh
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.49-53
    • /
    • 2004
  • The genetic basis of hypertension is complex, and has been considered to be associated with the dopamine D2 receptor gene (DD2R). Because association studies using the candidate gene approach may provide important clues regarding the pathogenesis of hypertension and establish basis for further study, we performed the association study on the relationship between genetic polymorphisms in the DD2R gene and hypertension in Koreans. Eighty nine patients with hypertension and 86 age-matched subjects with normal blood pressure were enrolled. Genomic DNA was extracted from peripheral blood leukocytes. PCR-RFLP analysis was performed to detect the three polymorphic Taq I sites in the DD2R gene. There were no significant differences in genotype, allele and haplotype distributions of any polymorphisms in the DD2R gene between two groups, respectively (P>0.05), although significant linkage disequilibriums among these polymorphic sites were detected by pair-wise analysis (P<0.05). Therefore, our negative result suggest that the three Taq I RFLPs in the DD2R gene were not significantly associated with hypertension in Koreans.

Inhibitory Effects of Paeonol on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Bae, Ki-Hwan;Yun, Yeo-Pyo;Hong, Jin-Tae;Kwon, Han-Na;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.904-910
    • /
    • 2006
  • The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.

NMDA-type Glutamatergic Modulation in Dopaminergic Activation Measured by Apomorphine-Induced Cage Climbing Behaviors

  • Jang, Choon-Gon;Lee, Seok-Yong
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.613-617
    • /
    • 2001
  • The present study examined the hypothesis that NMDA, AMPA/Kainate, and metabotropic (mGlu) glutamate receptors contribute to a behavioral stimulation induced by activation of dopamine receptors by comparing responses in apomorphine-induced cage climbing behaviors in mice. MK-801, CNQX, and MCPG were served as the NMDA receptor, AMPA/Kainate receptor, and mGlu receptor antagonist, respectively, to elucidate the glutamatergic modulation in apomorphine-induced eopaminergic activation in mice. Drugs were administered intracerebroventricularly (i.c.v.) into the mouse brain 15 min before the apomorphine treatment (2 mg/kg, s.c.). 1.c.v. injection of MK-801 inhibited the apomorphine-induced cage climbing behavior dose-dependently. However, treatments with CNQX and MCPG did not any significant change in apomorphine-induced cage climbing behavior in mice. These results suggest that stimulation of NMDA type of glutamate receptors could contribute to the dopaminergic sti mutation, but not AMPA/Kainate and mGlu type glutamate receptors.

  • PDF

The Dopamine D4 Receptor Polymorphism Affects the Canine Fearfulness

  • Lee, Chae-Young;Kim, Chang-Hoon;Shin, Soo-An;Shin, Dae-Sung;Kang, Joo-Hyun;Park, Chan-Kyu
    • Animal cells and systems
    • /
    • v.12 no.2
    • /
    • pp.77-83
    • /
    • 2008
  • The canine fearfulness is a behavioral trait known to have a genetic basis. This research analyzed genetic effects of the dopamine D4 receptor polymorphism on this behavior by postulating a mixed model of inheritance. Genotyping for the three different repeat polymorphism found in the third exon of the receptor gene was carried out for the population of the Korean native dogs. Four hundred fifty eight dogs with known pedigree were genotyped, and 264 individuals were tested for their fear responses to an experimenter, in which four different behavioral paradigms were adopted. Since the results assessed by principal factor analysis revealed a major factor explaining 69% of the total phenotypic variance, the subsequent analyses were conducted for this quantity. Analyses of the factor scores by estimating their posterior means indicated that there is a fixed effect exerted by the three different repeat polymorphism found in the D4 receptor as well as sex, in addition to unidentified polygenic effects. The phenotypic contribution of the D4 genotype was roughly estimated to be about 2%, which is a fraction of the total genetic effects responsible for more than 20% of the total phenotypic variance.

Biased Dopamine D2 Receptors Exhibit Distinct Intracellular Trafficking Properties and ERK Activation in Different Subcellular Domains

  • Shujie Wang;Lulu Peng;Kyeong-Man Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • Biased signaling or functional selectivity refers to the ability of an agonist or receptor to selectively activate a subset of transducers such as G protein and arrestin in the case of G protein-coupled receptors (GPCRs). Although signaling through arrestin has been reported from various GPCRs, only a few studies have examined side-by-side how it differs from signaling via G protein. In this study, two signaling pathways were compared using dopamine D2 receptor (D2R) mutants engineered via the evolutionary tracer method to selectively transduce signals through G protein or arrestin (D2G and D2Arr, respectively). D2G mediated the inhibition of cAMP production and ERK activation in the cytoplasm. D2Arr, in contrast, mediated receptor endocytosis accompanied by arrestin ubiquitination and ERK activation in the nucleus as well as in the cytoplasm. D2Arr-mediated ERK activation occurred in a manner dependent on arrestin3 but not arrestin2, accompanied by the nuclear translocation of arrestin3 via importin1. D2R-mediated ERK activation, which occurred in both the cytosol and nucleus, was limited to the cytosol when cellular arrestin3 was depleted. This finding supports the results obtained with D2Arr and D2G. Taken together, these observations indicate that biased signal transduction pathways activate distinct downstream mechanisms and that the subcellular regions in which they occur could be different when the same effectors are involved. These findings broaden our understanding on the relation between biased receptors and the corresponding downstream signaling, which is critical for elucidating the functional roles of biased pathways.

The Dopamine $D_2$ Receptor Locus as a Modifying Gene in Korean Schizophrenia, Alcoholism and Drug Addiction (정신분열증, 알코올중독, 약물중독에서 도파민 $D_2$ 수용체 유전자의 조절유전자(modifying gene)로서의 역할 - 충동적.강박적.탐닉적 행동을 나타내는 정신질환들에서 도파민 $D_2$ 수용체의 조절유전자로서의 역할 -)

  • Jung, Hyun-Mo;Lee, Hong-Seock;Chang, Dong-Won;Lee, Min-Soo
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.2
    • /
    • pp.225-233
    • /
    • 1997
  • The authors attempted to examine the allelic association between the A1 allele of Dopamine $D_2$ receptor and schizophrenia, alcoholism, drug addiction in Koreans. Schizophrenic patients(n=31), alcoholism(n=65), drug addiction(n=18) and controls(n=52) were examined by case-control study for distribution of the TaqI polymorphism of the dopamine $D_2$ receptor gene in Korean population to minimize the effect of racial differencies in gene frequencies. In schizophrenics, the numbers of schizophrenics with A1A1, A1A2, A2A2 were 9(29.0%), 15(48.4%) and 7(22.6%) respectively and in alcoholics with A1A1, A1A2, A2A2 were 14(21.5%), 36(55.4%) and 15(23.1%) respectively and in drug addiction with A1A1, A1A2, A2A2 were 2(11.1%), 10(55.6%) and 6(33.3%) respectively and in controls with A1A1, A1A2, A2A2 were 4(7.6%), 24(46.2%) and 24(46.2%) respectively. The prevalence of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 77%, 76.9%, 67% and 53.8% respectively. And the frequency of the A1 allele in schizophrenics, alcoholics, drug addiction and controls were 0.53, 0.49 0.39 and 0.31 respectively. There was significant difference in the frequency of the A1 allele between schizophrenics, alcoholics and controls. We also classified our alcoholic population. For classification by severity, we used the median MAST score 30 in our samples. There was also significant difference in the frequency of the A1 allele between less severe group(0.42) and more severe group(0.57). This data suggest that the A1 allele is associated with schizophrenia and alcoholism in Koreans. Furthermore the prevalence of the A1 allele increassed in more severely affected alcoholics. The authors conclude that our data support an allelic association between the A1 allele at dopamine $D_2$ receptor and schizophrenia, alcoholism. These results suggest the A1 allele of the $DRD_2$ gene is associated with a number of behavior disorders in which it may act as a modifying gene rather than as the primary etiological agent.

  • PDF

Renal Action of Domperidone in Dog (돔페이돈의 신장작용)

  • 고석태;최홍석
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.561-570
    • /
    • 1993
  • Renal action of domperidone known as dopamine receptor blocker and effect of domperidone on renal function of dopamine were investigated in dog. Domperidone, when administered into vein, produced diuretic action by the improvement of renal hemodynamic state, when given into a renal artery, elicited diuretic action accompanied with natriuresis in only experimental kidney, whereas domperidone given into carotid artery exhibited antidiuretic action by the decrease of Na$^{+}$ excretion in urine. Diuretic action of dopamine was not influenced by domperidone given into vein or into a renal artery, was blocked by domperidone given into carotid artery. Above results suggest that domperidone produced both peripheral diuretic and central antidiuretic action, and domperidone do not block diuretic action by renal hemodynamic improvement of dopamine in kidney.

  • PDF

Influence of Caffeine on Dopamine D$_1$and D$_2$Receptor mRNAs Expression in Rat Brain (도파민 D$_1$과 D$_2$수용체 mRNAs의 발현에 미치는 카페인의 영향)

  • 김근양;신지혜;김명옥
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • The caffeine intake cause a local or wide ranges of convulsion and it is associated with release of dopamine (DA) receptors into the brain striatum. However, the effect of caffeine addiction on expression of DA receptors gene in the rat caudate-putamen (CPu), nucleus accumbens (NAc), and olfactory tubercle (OTu) has not been elucidated. In this study, we examined the influence of caffeine addiction on DA D $_1$and D$_2$receptor mRNAs after the treatment of caffeine for four weeks. Using the specific antisense ribo-probes for DA D$_1$and D$_2$receptor cDNAs, in situ hybridization was performed on the CPu, NAc, and OTu of the adult male Sprague Dawely rats. In caffeine-treated group, DA D$_1$and D$_2$receptor mRNAs were highly increased in CPu, NAc, and OTu. The expression density of DA D$_1$receptor mRNAs were 2.52${\pm}$1.40 (CPu), 2.78${\pm}$1.69 (NAc), and 3.91${\pm}$1.28 (OTu) in control group and 7.76${\pm}$2.09 (CPu), 4.2 ${\pm}$1.85 (NAc), and 8.21${\pm}$1.72 (OTu) in caffeine-treated group. The expression density of DA D$_2$receptor mRNA was 2.32${\pm}$1.52 (CPu), 2.63${\pm}$2.11 (NAc), and 3.61${\pm}$1.43 (OTu) in control group, and 6.41${\pm}$1.82 (CPu), 6.89${\pm}$1.32 (NAc), and 6.82${\pm}$1.18 (OTu) in caffeine-treated group. DA D$_1$receptor mRNA was higher expressed than DA D$_2$ receptor mRNA in CPu and NAc. These results suggest that caffeine reacts as a upregulator of the expression of DA D$_1$and D$_2$receptor mRNA among the neurotransmitters.

  • PDF