• 제목/요약/키워드: donkey meat

검색결과 3건 처리시간 0.016초

Characterization of Volatile Compounds in Donkey Meat by Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Chemometrics

  • Mengmeng Li;Mengqi Sun;Wei Ren;Limin Man;Wenqiong Chai;Guiqin Liu;Mingxia Zhu;Changfa Wang
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.165-177
    • /
    • 2024
  • Volatile compounds (VOCs) are an important factor affecting meat quality. However, the characteristic VOCs in different parts of donkey meat remain unknown. Accordingly, this study represents a preliminary investigation of VOCs to differentiate between different cuts of donkey meat by using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with chemometrics analysis. The results showed that the 31 VOCs identified in donkey meat, ketones, alcohols, aldehydes, and esters were the predominant categories. A total of 10 VOCs with relative odor activity values ≥1 were found to be characteristic of donkey meat, including pentanone, hexanal, nonanal, octanal, and 3-methylbutanal. The VOC profiles in different parts of donkey meat were well differentiated using three- and two-dimensional fingerprint maps. Nine differential VOCs that represent potential markers to discriminate different parts of donkey meat were identified by chemometrics analysis. These include 2-butanone, 2-pentanone, and 2-heptanone. Thus, the VOC profiles in donkey meat and specific VOCs in different parts of donkey meat were revealed by HS-GC-IMS combined with chemometrics, whcih provided a basis and method of investigating the characteristic VOCs and quality control of donkey meat.

Flavor Components Comparison between the Neck Meat of Donkey, Swine, Bovine, and Sheep

  • Li, Xiu;Amadou, Issoufou;Zhou, Guang-Yun;Qian, Li-Yan;Zhang, Jian-Ling;Wang, Dong-Liang;Cheng, Xiang-Rong
    • 한국축산식품학회지
    • /
    • 제40권4호
    • /
    • pp.527-540
    • /
    • 2020
  • Donkey in China is well known for its draft purpose and transportation; however, donkey meat has attracted more and more consumers in recent years, yet it lacks sufficient information on its flavor components compared to other main meats. Therefore, in this study, volatile flavor compounds in neck meat of donkey, swine, bovine, and sheep were classified by electronic nose, then confirmed and quantified by gas chromatography-mass spectrometry. High-performance liquid chromatography (HPLC) and gas chromatography were used to quantify free fatty acid, amino acid, and flavor nucleotide. A total of 73 volatile compounds were identified, and aldehydes were identified as the characteristic flavor compounds in neck meat of donkey, bovine, swine and sheep in proportion of 76.39%, 46.62%, 31.64%, and 35.83%, respectively. Particularly, hexanal was the most abundant volatile flavor. Compared with other neck meat, much higher unsaturated free fatty acids were present in donkeys. Furthermore, neck meat of donkeys showed essential amino acid with highest content. Thus, special flavor and nutrition in donkey neck meat make it probably a candidate for consumers in other regions besides Asia.

Study on Microbial Community Succession and Protein Hydrolysis of Donkey Meat during Refrigerated Storage Based on Illumina NOVA Sequencing Technology

  • Wei, Zixiang;Chu, Ruidong;Li, Lanjie;Zhang, Jingjing;Zhang, Huachen;Pan, Xiaohong;Dong, Yifan;Liu, Guiqin
    • 한국축산식품학회지
    • /
    • 제41권4호
    • /
    • pp.701-714
    • /
    • 2021
  • In this study, the microbial community succession and the protein hydrolysis of donkey meat during refrigerated (4℃) storage were investigated. 16S rDNA sequencing method was used to analyze the bacteria community structure and succession in the level of genome. Meanwhile, the volatile base nitrogen (TVB-N) was measured to evaluate the degradation level of protein. After sorting out the sequencing results, 1,274,604 clean data were obtained, which were clustered into 2,064 into operational taxonomic units (OTUs), annotated to 32 phyla and 527 genus. With the prolonging of storage time, the composition of microorganism changed greatly. At the same time, the diversity and richness of microorganism decreased and then increased. During the whole storage period, Proteobacteria was the dominant phyla, and the Photobacterium, Pseudompnas, and Acinetobacter were the dominant genus. According to correlation analysis, it was found that the abundance of these dominant bacteria was significantly positively correlated with the variation of TVB-N. And Pseudomonas might play an important role in the production of TVB-N during refrigerated storage of donkey meat. The predicted metabolic pathways, based on PICRUSt analysis, indicated that amino metabolism in refrigerated donkey meat was the main metabolic pathways. This study provides insight into the process involved in refrigerated donkey meat spoilage, which provides a foundation for the development of antibacterial preservative for donkey meat.