• Title/Summary/Keyword: domain-specific computational engines (DCE)

Search Result 1, Processing Time 0.013 seconds

Multi-objective optimization model for urban road maintenance planning using BIM, GIS, and DCE

  • Sining LI;Zhihao REN;Yuanyuan TIAN;Jung In KIM;Li MA;Longyang HUANG
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.807-814
    • /
    • 2024
  • Urban road maintenance creates potential risks for both road users and workers in addition to traffic congestion and delays. The adverse effects of maintenance work could be minimized through mitigation measures of work zone layout and construction arrangement, such as reducing the dimension of work zone segments and scheduling construction during low-traffic periods. However, these measures inevitably escalate construction costs. Consequently, decision-making in urban road maintenance necessitates a balance among multiple strategic objectives to facilitate optimal development via a comprehensive road maintenance management system. This study aims to propose an integrated framework to accomplish the multiple and conflicting objectives for maximizing safety and mobility while minimizing construction costs by optimizing the work zone layout and construction sequence dynamically. The framework enables the seamless information exchange among building information modeling (BIM), geographic information system (GIS), and domain-specific computational engines (DCE), which perform interdisciplinary assessments and visualization. Subsequently, a genetic algorithm is employed to determine the optimal plan considering multiple objectives due to its versatility in resolving highly complex conflict problems.