• Title/Summary/Keyword: dodecane

Search Result 114, Processing Time 0.02 seconds

LLE and SLM studies for Pd(II) separation using a thiodiglycolamide-based ligand

  • Kumbhaj, Shweta;Prabhu, Vandana;Patwardhan, Anand V.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.463-471
    • /
    • 2018
  • The present paper deals with the liquid-liquid extraction and flat sheet supported liquid membrane studies of Pd(II) separation from nitric acid medium using a novel synthesized ligand, namely, N,N,N',N'-tetraethyl-2,2-thiodiethanthiodiglycolamide (TETEDGA). The effect of various diluents and stripping reagents on the extraction of Pd(II) was studied. The liquid-liquid extraction studies showed complete extraction of Pd(II) in ~ 5 min. The influence of nitric acid and TETEDGA concentration on the distribution of Pd(II) has been investigated. The increase in nitric acid concentration resulted in increase in extraction of Pd(II). Stoichiometry of the extracted species was found to be $Pd(NO_3)_2{\cdot}TETEDGA$ by slope analysis method. Extraction studies with SSCD solution showed negligible uptake of Pt, Cr, Ni, and Fe, thus showing very high selectivity and extractability of TETEDGA for Pd(II). The flat sheet supported liquid membrane studies showed quantitative transport of Pd(II), ~99%, from the feed ($3M\;HNO_3$) to the strippant (0.02 M thiourea diluted in $0.4M\;HNO_3$) using 0.01 M TETEDGA as a carrier diluted in n-dodecane. Extraction time was ~160 min. Parameters such as feed acidity, TETEDGA concentration in membrane phase, membrane porosity etc. were optimized to achieve maximum transport rate. Permeability coefficient value of $2.66{\times}10^{-3}cm/s$ was observed using TETEDGA (0.01 M) as carrier, at 3 M, $HNO_3$ feed acidity across $0.2{\mu}m$ PTFE as membrane. The membrane was found to be stable over five runs of the operation.

A Study on Evaporative Characteristics of Multi-component Mixed Fuels Using Mie Scattered Light and Shadowgraph Images (Mie 산란광법 및 Shadowgraph법을 이용한 다성분 혼합연료의 증발특성연구)

  • Yoon, Jun-Kyu;Myong, Kwang-Jae;Jiro Senda;Fujimoto Hajime;Cha, Kyung-Ok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.682-691
    • /
    • 2006
  • This study was conducted to assess the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the various ambient conditions. Spray structure and spatial distribution of liquid phase concentration are investigated using a thin laser sheet illumination technique on the multi-component mixed fuels. A pulsed Ar+ laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contain $i-octane(C_8H_{18}),\;n-dodecane(C_{12}H_{26})$ and $n-hexadecane(C_{16}H_{34})$ that are selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 25Mpa, 42MPa, 72MPa and 112MPa in injection pressure, $5kg/m^3,\;15kg/m^3\;and\;20kg/m^3$ in ambient gas density, 400K, 500K, 600K and 700K in ambient gas temperature, 300K and 368K in fuel temperature, and different fuel mass fraction. Experimental results indicate that the more high-boiling point component, the longer the liquid phase it were closely related to fuel physical properties, but injection pressure had no effect on. And there was a high correlation between the liquid phase length and boiling temperature at 75% distillation point.

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

Isoaltion and characterization of petroleum degrading bacteria (원유분해세균의 분리 및 특성)

  • Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.5 no.2
    • /
    • pp.153-158
    • /
    • 1992
  • From several sites of petroleum storage basement in South Coasts in Korea, various petroleum degrading bacteria have been isolated and characterized as Pseudomonas fluorescens, Acinetobacter baumanii, Pseudomonas maltophila and Pseudomonas aeruginosa, respectively. They show the ability of petroleum degradation on minimal media which contains petroleum as sole carbon source and loose the ability at high concentration of NaCl as increasing the concentration of NaCl from 0.5% to 6%. It has been confirmed that such bacteria have utilized the simple saturate hydrocarbon; n-decane, n-hexane, n-octane and n-decane because petroleum consists of various kinds of organic compounds. It has been also identified that petroleum degrading bacteria habor the plasmid and show the antibiotic resistance against ampicillin, tetracycline and chloramphenicol. These results strongly suggest that the petroleum degrading gene and antibiotic resistance gene might be located on the high molecular weight plasmid.

  • PDF

An Experimental Analysis on the Spray Structure of Multi-component Fuels Using Magnification Photograph and Mie Scattering Images (확대촬영법 및 Mie 산란광법을 이용한 다성분연료의 분무구조에 관한 실험적 해명)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.707-716
    • /
    • 2008
  • The objective of this study was to analyze the effect of mixed fuel composition and mass fraction on spray inner structure in evaporating transient spray under the variant ambient conditions. Spray structure and spatial distribution of liquid phase concentration were investigated using a thin laser sheet illumination technique on the three component mixed fuels. A pulsed Nd:YAG laser was used as a light source. The experiments were conducted in a constant volume vessel with optical access. Fuel was injected into the vessel with electronically controlled common rail injector. Used fuel contains i-octane($C_8H_{18}$), n-dodecane($C_{12}H_{26}$) and n-hexadecane($C_{16}H_{34}$) that were selected as low-, middle- and high-boiling point fuel, respectively. Experimental conditions are 42 MPa, 72 MPa and 112 MPa in injection pressure, $5\;kg/m^3$, $15kg/m^3$ and $30kg/m^3$ in ambient gas density, 300 K, 500 K, 600 K and 700 K in ambient gas temperature, 300 K and 368 K in fuel temperature and different fuel mass fraction. Experimental results indicated that the multi-component fuels made two phase region mixed vapor and liquid so that it would are helpful to improve combustion, for the fuels of high boiling point component could accelerate evaporation very much according as low boiling point fuel was added to high boiling point fuel.

The Effects of Temperature on the Detergency of Nan-Alkylsulfates havign Different Chain Length -the effects of washing temperature- (Sodium n-Alkylsulfate의 Alkyl group의 쇄장과 세척성 -세척온도 변화를 중심으로-)

  • Jeong Kyung Myung;Ryu Hyo Seon;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.7 no.2
    • /
    • pp.11-17
    • /
    • 1983
  • There have been two supposition that the decrement of fatty soil removal at high temperature was caused by surfactants and by the structure of fibers and Fabrics. To study the effect of temperature on the removal of fatty soil, the following variables were selected: Sodium n-alkylsulfates having various chain lengths of alkyl groups as surfactants, cotton and cuprammonium rayon as cellulose fibers having different fiber structure, and two types of soil having different melting points. Experiment was carried out with radiotagged soil and detergency was estimated by liquid scintillation counting. The results were as following: the detergency of tripalmitin on cotton was increased with elevating temperature up to $60\~70^{\circ}C$ and decreased above $70^{\circ}C$ regardless of alkyl chain length of sodium n-alkylsulfates. In distilled water without surfactant, the detergency of tripalmitin on cotton was also decreased above $70^{\circ}C$, but the detergency of tripalmitin on cuprammonium rayon was not decreased above $70^{\circ}C$. effects seemed to be caused by fiber structure. Though the melting point of mixture of tripalmitin and dodecane was lower than that of tripalmitin, the optimum and decrement temperature of detergency were not altered. Finally the results of this study were shown that the surfactant and characteristics of soil did not affect on the mode of detergency vs temperature, but the fiber structure.

  • PDF

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water

  • Alvarez, Vanessa Marques;Santos, Silvia Cristina Cunha dos;Casella, Renata da Costa;Vitae, RonaIt Leite;Sebastin, Gina Vazquez;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1966-1974
    • /
    • 2008
  • A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Some Factors Effect on the Detergency of Triglyceride (Triglyceride의 세척성에 영향을 미치는 몇가지 요인)

  • Lee Mee Sik;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.5 no.1
    • /
    • pp.15-21
    • /
    • 1981
  • The effect of fatty acid content in oily soil and conditions of washing on the removal of triglyceride have been studied. Cotton lawn was soiled with the four-component soil-tripalmitin, palmitic acid, dodecyl alcohol and dodecane-and washed in constant temperature waterbath shaker. The detergency was estimated by analysis of triglyceride labelled carbon-14 on fabrics before and after washing by means of liquid scintillation counting. It was shown that the detergency of triglyceride washed with the nonionic, nonylphenol poly (10)-ethylene oxide and soap was increased steadily with increasing temperature, whereas with the anionics Na-DBS and SLS, the detergency was rather decreased when the temperature was elevated above $40^{\circ}C$. To investigate the effects of free fatty acid content in soil on the removal of triglyceride, the fabrics were soiled altering palmitic acid content, and then washed. From the results, the detergency of triglyceride was developed with increasing free fatty acid content. With soils containing less than $30\%$ of free fatty acid, of the three detergents tested, the nonionic was by far the most effective soil removal. Soap was intermediate and the synthetic anionic was the poorest. With soil containing $45\%$ of free fatty acid, soap was the most effective soil removal. When NaOH was added to detergent solution. the detergency of triglyceride was improved without regard to detergents. The optimum alkalinity was obtained according to free fatty acid content. And the alkalinity changed to low NaOH concentration with increasing free fatty acid content. From the results mentioned above, it could be concluded that the major removal mechanisms of triglyceride containing oily soil were mesomorphic phase formation, solubilization and soap forma-tion when alkali was added in detergent solution.

  • PDF

Detergency and Water Wetting/Retention Properties of Soiled Cotton Cloths in Nonionic Surfactant Solutions (비이온계 계면활성제 수용액에서 면 오염포의 습윤특성과 세척성)

  • Kim, Chun-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.433-439
    • /
    • 2007
  • The effects of nonionic surfactants on detergency and water wetting/retention properties of soiled cotton cloths were reported. Two different soiled cloths were used. soiled cotton cloth 1 was made in the lab. with carbon black, tripalmitin, n-dodecane & palmitic acid on Korea Apparel Testing & Research Institute(KATRI) cotton testcloth and soiled cotton cloth 2(EMPA 101) was purchased from Testfabrics, Inc., USA. The following nonionic surfactants; l.e., Span 20, Tween 20, 40, 60, 80, 21, 61, 81, 65, & 85, were used in the study. The water retention ratio(W/H) values of soiled cotton cloths were decreased, whereas the water contact angle values of soiled cloth were not changed markedly compared with those of unsoiled testcloths. The wetting and water retention of soiled cotton cloth 1 was improved with addition of nonoinic surfactants. The surfactants which have more hydrophilic characterictics or unsaturated hydrophobe tails were effective in improving wetting and water retention properties of soiled cotton cloth 1. The water contact angle values of soiled cotton cloths were extremely low with Span 20, presumably due to the high adsorption density or the surfactant. The detergency of soiled cloths were low in Span 20 and high in Tween 20, 40, 60 & 80 0.1g/dl surfactant solutions. Nonionic surfactants having higher ethylene oxide contents resulted in better detergency. In the range studied, the wetting and water retention of soiled cotton cloths did not show any particular relation to the detergency, whereas the surfactant characteristics, especially HLB values, influenced the detergency of soiled cotton cloths.