• 제목/요약/키워드: document topic

검색결과 190건 처리시간 0.029초

Scientific Publications on Thyroid Ultrasound between 2001 and 2020: Differences in Research Characteristics by Disciplines

  • Won Chul Shin;Chae Woon Lee;Jiyeon Ha;Kyoung Ja Lim;Young Lan Seo;Eun Joo Yun;Dae Young Yoon
    • Korean Journal of Radiology
    • /
    • 제23권8호
    • /
    • pp.835-845
    • /
    • 2022
  • Objective: To analyze the characteristics and trends of scientific publications on thyroid ultrasound (US) from 2001 to 2020, specifically examining the differences among disciplines. Materials and Methods: The MEDLINE database was searched for scientific articles on thyroid US published between 2001 and 2020 using the PubMed online service. The evaluated parameters included year of publication, type of document, topic, funding, first author's specialty, journal name, subject category, impact factor, and quartile ranking of the publishing journal, country, and language. Relationships between the first author's specialty (radiology, internal medicine, surgery, otorhinolaryngology, and miscellaneous) and other parameters were analyzed. Results: A total of 2917 thyroid US publications were published between 2001 and 2020, which followed an exponential growth pattern, with an annual growth rate of 11.6%. Radiology produced the most publications (n = 1290, 44.2%), followed by internal medicine (n = 716, 24.5%), surgery (n = 409, 14.0%), and otorhinolaryngology (n = 171, 5.9%). Otorhinolaryngology and internal medicine published significantly more case reports than radiology (p < 0.001, each). Radiology published a significantly higher proportion of publications on imaging diagnosis (p < 0.001 for all) and a significantly lower proportion of publications on biopsy (p < 0.001 for all) than the other disciplines. Publications produced by radiology authors were less frequently published in Q1 journals than those from other disciplines (p < 0.005 for internal medicine and miscellaneous disciplines and < 0.01 for surgery and otorhinolaryngology). China contributed the greatest number of publications (n = 622, 21.3%), followed by South Korea (n = 478, 16.4%) and the United States (n = 468, 16.0%). Conclusion: Radiology produced the most publications for thyroid US than any other discipline. Radiology authors published more notably on imaging diagnosis compared to other topics and in journals with lower impact factors compared to authors in other disciplines.

미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 - (Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining -)

  • 석영선;송기환;한효주;이정아
    • 한국조경학회지
    • /
    • 제49권5호
    • /
    • pp.79-96
    • /
    • 2021
  • 그린인프라 계획은 미세먼지 저감을 위한 대표적인 조경 계획 방안 중 하나이다. 이에, 본 연구에서는 미세먼지 저감을 위한 그린인프라 계획 시 활용될 수 있는 요소를 텍스트 마이닝 기법을 활용하여 도출하고자 하였다. 미세먼지 저감계획, 그린인프라 계획 요소 등의 키워드를 중심으로 관련 선행연구, 정책보고서 및 법률 등을 수집하여 텍스트 마이닝을 통해 단어 빈도-역 문서 빈도(Term Frequency-Inverse Document Frequency, 이하 TF-IDF) 분석, 중심성 분석, 연관어 분석, 토픽 모델링 분석을 실시하였다. 연구결과, 첫째, TF-IDF 분석을 통해 미세먼지 및 그린인프라와 관련된 주요 주제어는 크게 환경문제(미세먼지, 환경, 탄소, 대기 등), 대상 공간(도시, 공원, 지역, 녹지 등), 그리고 적용 방법(분석, 계획, 평가, 개발, 생태적 측면, 정책적 관리, 기술, 리질리언스 등)으로 구분할 수 있었다. 둘째, 중심성 분석 결과, TF-IDF와 유사한 결과가 도출되었으며, 주요 키워드들을 연결하는 중심단어는 '그린뉴딜', '유휴부지'임을 확인할 수 있었다. 셋째, 연관어 분석 결과, 미세먼지 저감을 위한 그린인프라 계획 시, 숲과 바람길의 계획이 필요하며, 미기후 조절의 측면에서 수분에 대한 고려가 반드시 필요한 것으로 확인되었다. 또한, 유휴공간의 활용 및 혼효림의 조성, 미세먼지 저감 기술의 도입과 시스템의 이해가 그린인프라 계획 시 중요한 요소가 될 수 있음을 확인할 수 있었다. 넷째, 토픽 모델링 분석을 통해 그린인프라의 계획요소를 생태적·기술적·사회적 기능을 중심으로 분류하였다. 생태적 기능의 계획요소는 그린인프라의 형태적 부분(도시림, 녹지, 벽면녹화 등)과 기능적 부분(기후 조절, 탄소저장 및 흡수, 야생동물의 서식처와 생물 다양성 제공 등), 기술적 기능의 계획요소는 그린인프라의 방재 기능, 완충 효과, 우수관리 및 수질정화, 에너지 저감 등, 사회적 기능의 계획요소는 지역사회 커뮤니티 기능, 이용객의 건강성 회복, 경관 향상 등의 기능으로 분류되었다. 이와 같은 결과는 미세먼지 저감을 위한 그린인프라 계획 시 리질리언스 및 지속가능성과 같은 개념적 키워드 중심의 접근이 필요하며, 특히, 미세먼지 노출 저감의 측면에서 그린인프라 계획요소의 적용이 필요함을 시사한다고 볼 수 있다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

항공산업 미래유망분야 선정을 위한 텍스트 마이닝 기반의 트렌드 분석 (Text Mining-Based Emerging Trend Analysis for the Aviation Industry)

  • 김현정;조남옥;신경식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.65-82
    • /
    • 2015
  • 최근 경제적 사회적 부가가치를 창출할 수 있는 유망분야를 선정하여 국가 전략 및 정책 수립 시 반영하기 위해 미래 핵심 이슈를 발견하고 트렌드를 분석하는 것에 대한 관심이 급증하고 있다. 기존에는 미래의 핵심 기술이나 이슈를 발견하고 트렌드 분석을 통해 미래유망분야를 선정하는 연구를 위해 문헌 조사 또는 전문가 평가와 같은 정성적 연구방법이 사용되어 왔다. 그러나 이 연구방법은 대량의 정보로부터 결과를 도출하는데 많은 시간과 비용이 소요될 뿐만 아니라 전문가의 주관적인 가치가 반영될 가능성이 존재한다. 이와 같은 한계점을 보완하고자 최근 국토교통, 안전, 정보통신기술 등 다양한 분야에서 미래유망분야를 선정하기 위하여 정성적 연구방법에 텍스트 마이닝과 같은 정량적 연구방법을 상호 보완적으로 활용하는 방식으로 트렌드 분석을 수행하는 연구 방법론의 패러다임 변화가 시도되고 있다. 본 연구는 항공산업 전반적인 분야에 빅데이터 분석 방법인 텍스트 마이닝 기법을 적용하여 항공 분야의 연구동향을 파악하고 미래유망분야를 전망하였다. 텍스트 마이닝 기법 중하나인 토픽 분석을 이용하여 항공산업 전반적인 분야의 문서 집합 내 잠재된 토픽을 추출하고, 연도별로 핵심 토픽의 추이를 분석하였다. 분석 결과 항공산업의 미래유망분야로 항공안전정책, 항공운임(저가항공), 그리고 친환경 고연비 연료가 도출되었다. 본 연구결과는 분석 대상을 논문에 한정하여 수행하였다는 한계점이 존재하나, 항공산업 분야의 핵심 이슈를 도출하기 위하여 텍스트 마이닝 기반의 트렌드 분석에 대한 활용가능성을 제시하고, 미래유망분야를 선정하기 위한 정량적인 분석 방법론의 전형을 마련하였다는 점에서 의의가 있다.

한국농수산대학 신입생 자기소개서의 텍스트 마이닝과 연관규칙 분석 (1) (Text Mining and Association Rules Analysis to a Self-Introduction Letter of Freshman at Korea National College of Agricultural and Fisheries (1))

  • 주진수;이소영;김종숙;신용광;박노복
    • 현장농수산연구지
    • /
    • 제22권1호
    • /
    • pp.113-129
    • /
    • 2020
  • 본 연구는 2020년 한농대 입학생의 비정형 텍스트인 자소서에서 의미 있는 정보 혹은 규칙을 추출하기 위하여 고교 재학 중 '학업 및 학습경험'과 '교내 활동'을 기술한 두 개 문항에 대하여 텍스트 마이닝에 의한 토픽 분석과 연관성 분석을 하였다. 모집 전형을 구분하지 않은 텍스트 마이닝 분석 결과에서 '학업 및 학습 경험' 항목과 관련된 주요 키워드는 '공부', '생각', '노력', '문제', '친구' 등의 순으로 많이 나타났으며, '교내 활동' 항목과 관련된 주요 키워드는 '활동', '생각', '친구', '동아리', '학교' 등의 순으로 빈도가 높게 나타났다. 그러나 도시 인재 전형과 농수산 인재 전형 신입생들의 키워드 빈도 순위는 두 항목 모두 전형 특성에 따른 약간의 차이를 나타냈다. 빈도 분석에 결과는 빈도수 상위 50위까지의 키워드를 워드 클라우드로 시각화하여 키워드를 알기 쉽게 표현하였다. 연관 분석은 apriori() 함수를 사용하였으며 적정한 계산을 위하여 support(지지도)와 confidence(신뢰도)의 기준값을 항목별로 설정하였다. 먼저 '학업' 항목에 대한 연관 규칙은 46개를 추출하였으며, 그 가운데 {공부} => {생각}, {성적} => {공부} 및 {과목} => {공부} 등의 규칙에서 높은 연관성을 볼 수 있었다. 이 규칙을 바탕으로 매개체 역할의 키워드를 평가하는 관계 중심성 평가와 노드에 연결된 edge의 수에 따라 중요도를 파악하는 연결 중심성 평가에서는 '생각', '공부', '노력', '시간' 등의 키워드가 중심적인 역할을 하는 정보를 획득하였다. 다음으로 '교내 활동' 항목에서는 45개의 연관 규칙을 생성하여 {활동} => {생각}, {동아리} => {활동} 등의 규칙에서 높은 연관성을 볼 수 있었으며, 관계 중심성 평가와 연결 중심성 평가에서는 '생각', '활동', '학교', '시간', '친구' 등의 키워드가 중심 키워드라는 결과를 얻었다. 다음 연구에서는 자소서의 나머지 두 개의 문항 '배려·나눔·협력·갈등관리' 항목과 한농대 '지원동기와 향후 진로계획' 항목을 분석한다. 분석에는 '키워드의 빈도'에 '문서 빈도의 역수'를 곱하여 주로 다량의 문서에서 핵심어를 추출하는 TF-IDF(Term Frequency-Inverse Document Frequency) 분석을 추가한다.

사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로 (Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site)

  • 변성호;이동훈;김남규
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.23-43
    • /
    • 2016
  • 최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.

디지털 인문학에서 비정형 데이터 분석을 이용한 사조 분류 방법 (Mining Intellectual History Using Unstructured Data Analytics to Classify Thoughts for Digital Humanities)

  • 서한솔;권오병
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.141-166
    • /
    • 2018
  • 최근 디지털 인문학 (Digital humanities) 연구분야의 등장으로 정보기술을 활용하여 인문학 연구의 효율성 제고에 기여하고 있다. 특히 인문학 연구에서 특정한 인물 혹은 문서가 어떠한 사상 (idea)을 담고 있는지와 다른 사상과의 어떤 연결성을 가지는지를 자동적인 방법으로 분석하는 것은 지성사(intellectual history)를 파악하는 데 중요한 도전이 될 것이다. 본 연구의 목적은 책이나 논문, 기사와 같은 비정형 데이터 (unstructured data)에 포함된 주장을 파악하고 이를 다른 주장이나 사상과 어떠한 관련이 있는지를 자동으로 분석하는 방법을 제안하는 것이다. 특히 본 연구에서는 주장과 주장 사이의 영향관계를 밝히는 히스토리 마이닝 (History Mining)이라는 방법도 제안하였다. 이를 위해 딥러닝 기법 (deep learning method)을 포함한 분류알고리즘 기법 (classification algorithm)을 활용하였다. 본 연구가 제안하는 방법론의 성능을 검증하기 위하여 철학 사조 중에서 대표적으로 대비되는 경험주의와 합리주의 관련 철학자들을 선정하고 관련된 저서 혹은 인터넷 상의 글을 수집하였다. 분류 알고리즘의 성능은 Recall, Precision, F-Score 및 Elapsed Time으로 측정하였으며 DNN, Random Forest, 그리고 앙상블 등이 우수한 성능을 보였다. 선정된 분류 알고리즘으로 특정 철학자의 글에 대해 합리주의 혹은 경험주의로 분류하였으며, 그 철학자의 활동 연도를 고려하여 히스토리 맵을 생성할 수 있었다.

비지도학습 기반의 행정부서별 신문기사 자동분류 연구 (A Study on Automatic Classification of Newspaper Articles Based on Unsupervised Learning by Departments)

  • 김현종;유승의;이철호;남광우
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.345-351
    • /
    • 2020
  • 행정기관은 정책 대응성을 제고하기 위해 빅데이터 분석에 관심을 기울이고 있다. 빅데이터 중 뉴스 기사는 정책 이슈와 정책에 대한 여론을 파악하는데 중요한 자료로 활용될 수 있다. 한편으로 새로운 온라인 매체의 등장으로 뉴스 기사의 생산은 급격히 증가하고 있어 문서 자동분류를 통해 기사를 수집할 필요가 있다. 그러나 기존 뉴스 기사의 범주와 키워드 검색방법으로는 특정 행정기관 및 부서별로 업무에 관련된 기사를 자동적으로 수집하는 것에 한계가 있었다. 또한 기존의 지도학습 기반의 분류 기법은 다량의 학습 데이터가 필요한 단점을 가지고 있다. 이에 본 연구에서는 행정부서의 업무특징을 포함한 분류사전을 활용하여 기사의 분류를 효과적으로 처리하기 위한 방법을 제안한다. 이를 위해 행정 기관의 업무와 신문기사를 Word2Vec와 토픽모델링 기법으로 부서별 특징을 추출하여 분류사전을 생성하고, 행정 부서별로 신문기사를 자동분류 한 결과 71%정도의 정확도를 얻었다. 본 연구는 행정부서별 신문기사를 자동분류하기 위해 부서별 업무 특징 추출 방법과 비지도학습 기반의 자동분류 방법을 제시하였다는 학문적·실무적 기여점이 있다.

'다큐멘터리 아카이빙' 연구 서울기록원의 수집 사례를 중심으로 (A Study of Documentary Archiving Focusing on the case of Archiving by Seoul Metropolitan Archives)

  • 안드리;송영랑
    • 기록학연구
    • /
    • 제65호
    • /
    • pp.227-251
    • /
    • 2020
  • 도시의 기록화는 행정영역의 기록만으로 완전할 수 없으며 다양한 방식으로 도시에서 살아가는 시민들의 기록이 함께 수집되어야 한다. 이 연구는 서울기록원의 서울시 기록화 사업 사례를 토대로, 생산되지 않았거나 훼손되어 수집되기 어려운 시민의 기억을 남기기 위한 방법을 제시하기 위한 것이다. 기록학 실천주의의 입장 아래 기록으로는 남아있지 않아도 기억에는 존재하고 일상에 스며있는 서울에 대한 다양한 경험들을 남기기 위해 다큐멘터리를 도구로 제안하였다. 다큐멘터리는 서사성의 특징을 갖는다. 이는 매우 자의적 성격을 갖지만 구술이 아닌 다큐멘터리를 새로운 방법으로 제안하는 것은 이 서사성이라는 특징 때문이다. 구술기록이 갖는 자기역사성과 그로 인해 제공되는 필요 이상의 기억들을 배제하고 수집주제에 부합하는 내용을 기록화할 수 있는 방법이다. 본문에서는 서울기록원에서 서울기록 수집으로 제안한 서사 기반의 기록 수집 방법, 그리고 그 안에서 다큐멘터리 아카이빙의 역할과 의미를 살펴보았다. 그리고 서사기반 수집 안에서 다큐멘터리 아카이빙의 방법이 필요한 조건을 제시하였다. 또한, 다큐멘터리 아카이빙을 실행하기 위한 기획·절차와 함께 2019년 서울 기록 수집 사업의 일환으로 제작된 3편의 다큐멘터리 중 한 편을 사례로 소개하였다.

한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교 (Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance)

  • 조희련;임현열;이유미;차준우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.133-140
    • /
    • 2022
  • 우리는 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 문제에서 세 개의 딥러닝 기반 한국어 언어모델의 예측 성능을 조사한다. 이를 위해 총 304편의 답안지로 구성된 실험 데이터 세트를 구축하였는데, 답안지의 주제는 직업 선택의 기준('직업'), 행복한 삶의 조건('행복'), 돈과 행복('경제'), 성공의 정의('성공')로 다양하다. 이들 답안지는 네 개의 점수 구간으로 구분되어 평어 레이블(A, B, C, D)이 매겨졌고, 총 11건의 점수 구간 예측 실험이 시행되었다. 구체적으로는 5개의 '직업' 답안지 점수 구간(평어) 예측 실험, 5개의 '행복' 답안지 점수 구간 예측 실험, 1개의 혼합 답안지 점수 구간 예측 실험이 시행되었다. 이들 실험에서 세 개의 딥러닝 기반 한국어 언어모델(KoBERT, KcBERT, KR-BERT)이 다양한 훈련 데이터로 미세조정되었다. 또 두 개의 전통적인 확률적 기계학습 분류기(나이브 베이즈와 로지스틱 회귀)도 그 성능이 분석되었다. 실험 결과 딥러닝 기반 한국어 언어모델이 전통적인 기계학습 분류기보다 우수한 성능을 보였으며, 특히 KR-BERT는 전반적인 평균 예측 정확도가 55.83%로 가장 우수한 성능을 보였다. 그 다음은 KcBERT(55.77%)였고 KoBERT(54.91%)가 뒤를 이었다. 나이브 베이즈와 로지스틱 회귀 분류기의 성능은 각각 52.52%와 50.28%였다. 학습된 분류기 모두 훈련 데이터의 부족과 데이터 분포의 불균형 때문에 예측 성능이 별로 높지 않았고, 분류기의 어휘가 글쓰기 답안지의 오류를 제대로 포착하지 못하는 한계가 있었다. 이 두 가지 한계를 극복하면 분류기의 성능이 향상될 것으로 보인다.