문서-용어 빈도행렬은 텍스트 마이닝에서 분석하고자 하는 개체 정보를 가지고 있는 일반적인 자료 형태이다. 본 연구에서 문서 분류를 위해 문서-용어 빈도행렬에 적용되는 기존의 용어 가중치인 TF-IDF를 소개한다. 추가하여 최근에 알려진 용어 가중치인 TF-IDF-ICSDF와 TF-IGM의 정의와 장단점을 소개하고 비교한다. 또한 문서 분류 분석의 질을 높이기 위해 핵심어를 추출하는 방법을 제시하고자 한다. 추출된 핵심어를 바탕으로 문서 분류에 있어서 가장 많이 활용된 기계학습 알고리즘 중에서 서포트 벡터 머신을 이용하였다. 본 연구에서 소개한 용어 가중치들의 성능을 비교하기 위하여 정확률, 재현율, F1-점수와 같은 성능 지표들을 이용하였다. 그 결과 TF-IGM 방법이 모두 높은 성능 지표를 보였고, 텍스트를 분류하는데 있어 최적화 된 방법으로 나타났다.
기존에 단어의 빈도수를 근간으로 하는 문서 분류 시스템에서는 단일 키워드를 사용하기 때문에 사용자의 의도를 충분히 반영한 문서 분류가 어려웠다. 이러한 단점을 개선하기 위하여 우선 기존의 설명에 근거한 학습방법(explanation based learning)에서 한 예제만 있어도 지식베이스 정보와 함께 개념을 학습할 수 있다는 점에 착안하여 먼저 사용자 질의를 분석, 확장한 후 사용자 의도 트리를 생성한다. 이 의도 트리의 정보를 기존의 키워드 빈도 수에 근거한 문서분류 과정에 제약 및 보충 정보로 사용하여 사용자의 의도에 더욱더 근접한 웹 문서를 분류할 수 있다. 문서를 분류하는 측면에서 볼 때 구조화된 사용자 의도 정보는 단순한 키워드의 한계를 극복하여 문서 분류 과정에서 특정 키워드 빈도수의 임계값을 결정함으로서 잃게되는 문서 및 정보를 좀더 보유하고 재적용할 수 있게 된다. 질의에서 분석, 추출된 사용자 의도 트리는 기존의 통계 및 확률을 사용한 문서 분류기법들과 조합하여 사용자 의도정보를 제공함으로서 카테고리의 형성 방향과 범위를 결정하는데 높은 효율성을 보인다.
Journal of information and communication convergence engineering
/
제16권1호
/
pp.48-51
/
2018
The traditional documents analysis was centered on words based system was implemented using a morpheme analyzer. These traditional systems can classify used words in the document but, cannot help to user's document understanding or analysis. In this problem solved, System needs extract for most valuable paragraphs what can help to user understanding documents. In this paper, we propose system extracts paragraphs of normalized XML document. User insert to system what filename when wants for analyze XML document. Then, system is search for keyword of the document. And system shows results searched keyword. When user choice and inserts keyword for user wants then, extracting for paragraph including keyword. After extracting paragraph, system operating maintenance paragraph sequence and check duplication. If exist duplication then, system deletes paragraph of duplication. And system informs result to user what counting each keyword frequency and weight to user, sorted paragraphs.
International Journal of Knowledge Content Development & Technology
/
제9권3호
/
pp.23-41
/
2019
This study combines the concept of degree centrality in complex network with the Term Frequency $^*$ Proportional Document Frequency ($TF^*PDF$) algorithm; the combined method, called PMCN (PDF-Modified similarity and Complex Network), constructs relationship networks among sentences for writing news summaries. The PMCN method is a multi-document summarization extension of the ideas of Bun and Ishizuka (2002), who first published the $TF^*PDF$ algorithm for detecting hot topics. In their $TF^*PDF$ algorithm, Bun and Ishizuka defined the publisher of a news item as its channel. If the PDF weight of a term is higher than the weights of other terms, then the term is hotter than the other terms. However, this study attempts to develop summaries for news items. Because the $TF^*PDF$ algorithm summarizes daily news, PMCN replaces the concept of "channel" with "the date of the news event", and uses the resulting chronicle ordering for a multi-document summarization algorithm, of which the F-measure scores were 0.042 and 0.051 higher than LexRank for the famous d30001t and d30003t tasks, respectively.
본 연구는 텍스트 분류를 위한 효율적인 자질선정 방법으로 자질 순위화 기법의 성능을 구체적으로 검토하였다. 지금까지 자질 순위화 기법은 주로 문헌빈도에 기초한 경우가 대부분이며, 상대적으로 용어빈도를 사용한 경우는 많지 않았다. 따라서 텍스트 분류를 위한 자질선정 방법으로 용어빈도와 문헌빈도를 개별적으로 적용한 단일 순위화 기법들의 성능을 살펴본 다음, 양자를 함께 사용하는 조합 순위화 기법의 성능을 검토하였다. 구체적으로 두 개의 실험 문헌집단(Reuters-21578, 20NG)과 5개 분류기(SVM, NB, ROC, TRA, RNN)를 사용하는 환경에서 분류 실험을 진행하였고, 결과의 신뢰성 확보를 위해 5-fold cross validation과 t-test를 적용하였다. 결과적으로, 단일 순위화 기법으로는 문헌빈도 기반의 단일 순위화 기법(chi)이 전반적으로 좋은 성능을 보였다. 또한, 최고 성능의 단일 순위화 기법과 조합 순위화 기법 간에는 유의한 성능 차이가 없는 것으로 나타났다. 따라서 충분한 학습문헌을 확보할 수 있는 환경에서는 텍스트 분류의 자질선정 방법으로 문헌빈도 기반의 단일 순위화 기법(chi)을 사용하는 것이 보다 효율적이라 할 수 있다.
본 논문에서는 한국어 형태소 분석의 성능향상을 위해서, 어절에서 미등록어를 인식하여 자동으로 사전을 구축하는 방법을 제안한다. 제안하는 사전 구축 방법은 전문 분석 기반 사전 구축 방법과 웹 출현빈도 기반 사전 구축방법으로 구성되어 있다. 전문 분석 기반사전 구축 방법은 전체 문서에서 반복적으로 나타나는 문자열을 미등록어로 인식하고, 웹 출현빈도 기반사전 구축 방법은 반복되지 않은 문자열을 웹 문서에서 검색하여 그 출현빈도를 바탕으로 미등록어를 인식한다. 실험결과 전문 분석만을 바탕으로 하는 기존 접근방법에 비해서 웹 문서에서의 출현빈도도 함께 고려하여 제안하는 사전 구축 방법은 32.39% 정도 재현율이 높게 나타났다.
This paper proposes an automatic method to summarize Bangla news document. In the proposed approach, pronoun replacement is accomplished for the first time to minimize the dangling pronoun from summary. After replacing pronoun, sentences are ranked using term frequency, sentence frequency, numerical figures and title words. If two sentences have at least 60% cosine similarity, the frequency of the larger sentence is increased, and the smaller sentence is removed to eliminate redundancy. Moreover, the first sentence is included in summary always if it contains any title word. In Bangla text, numerical figures can be presented both in words and digits with a variety of forms. All these forms are identified to assess the importance of sentences. We have used the rule-based system in this approach with hidden Markov model and Markov chain model. To explore the rules, we have analyzed 3,000 Bangla news documents and studied some Bangla grammar books. A series of experiments are performed on 200 Bangla news documents and 600 summaries (3 summaries are for each document). The evaluation results demonstrate the effectiveness of the proposed technique over the four latest methods.
색인전문가에 의해 분류된 웹문서들을 통계적 자질 선택방법으로 자질을 추출하여 클라스터링을 해 보면, 자질 선택에 사용된 데이터셋에 따라 성능과 결과가 다르게 나타난다. 그 이유는 많은 웹 문서에서 문서의 내용과 관계없는 단어들을 많이 포함하고 있어 문서의 특정을 나타내는 단어들이 상대적으로 잘 두드러지지 않기 때문이다. 따라서 클러스터링 성능을 향상시키기 위해 이런 부적절한 자질들을 제거해 주어야 한다. 따라서 본 논문에서는 자질 선택에서 자질의 문서군별 자질값뿐만 아니라, 문서군별 자질값의 분포와 정도, 자질의 출현여부와 빈도를 고려한 자질 필터링 알고리즘을 제시한다. 알고리즘에는 (1) 단위 문서 내 자질 필터링 알고리즘(FFID : feature filtering algorithm in a document), (2) 전체 데이터셋 내 자질 필터링 알고리즘(FFIM : feature filtering algorithm in a document matrix), (3)FFID와 FFIM을 결합한 방법(HFF:a hybrid method combining both FFID and FFIM) 을 제시한다. 실험은 단어반도를 이용한 자질선택 방법, 문서간 동시-링크 정보의 자질확장, 그리고 위에서 제시한 3가지 자질 필터링 방법을 사용하여 클러스터링 했다. 실험 결과는 데이터셋에 따라 조금씩 차이가 나지만, FFID보다 FFIM의 성능이 좋았고, 또 FFID와 FFIM을 결합한 HFF 결과가 더 나은 성능을 보였다.
통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘인 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.
본 논문에서의 문맥의존 철자오류(Context-Sensitive Spelling Error) 교정 기법은 샤논(Shannon)의 노이지 채널 모형(noisy channel model)을 기반으로 한다. 논문에서 제안하는 교정 기법의 향상에는 보간(interpolation)을 사용하며, 일반적인 보간 방법은 확률의 중간 값을 채우는 방식으로 N-gram에 존재하지 않는 빈도를 (N-1)-gram과 (N-2)-gram 등에서 얻는다. 이와 같은 방식은 동일 통계 말뭉치를 기반으로 계산하는데 제안하는 방식에서는 통계 말뭉치와 교정 문서간의 빈도 정보를 이용하여 보간 한다. 교정 문서의 빈도를 이용하였을 때 이점은 다음과 같다. 첫째 통계 말뭉치에 존재하지 않고 교정 문서에서만 나타나는 신조어의 확률을 얻을 수 있다. 둘째 확률 값이 모호한 두 교정 후보가 있더라도 교정 문서를 참고로 교정하게 되어 모호성을 해소한다. 제안한 방법은 기존 교정 모형보다 정밀도와 재현율의 성능향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.