• 제목/요약/키워드: document categorization

검색결과 73건 처리시간 0.029초

자동분류 알고리즘을 이용한 지능형 정보검색시스템 구축에 관한 연구 (A Study of Designing the Intelligent Information Retrieval System by Automatic Classification Algorithm)

  • 서휘
    • 한국도서관정보학회지
    • /
    • 제39권4호
    • /
    • pp.283-304
    • /
    • 2008
  • 본 연구의 목적은 이용자의 탐색 행태, 시스템의 정보 구축 행태를 기반으로 초기 질의어의 범주에 해당하는 연관 용어들(해당 용어의 지식구조와 관련된 연관 용어들)을 학습기능을 통해 자동으로 제시해 줄 수 있는 지능형 검색 시스템을 구현하는 것이다. 이를 위해 학습을 통해 전문가 수준의 색인어를 추출할 수 있는 지능형자동색인 알고리즘, 자동분류에 관련한 클러스터링 알고리즘과 문서 범주화 알고리즘 그리고 범주 표현 알고리즘에 대한 이론적 연구를 수행하였으며, 이들 이론적 연구를 근거로 비용과 시간적인 측면에서 그리고 재현율과 정도율이란 측면에서 우수한 성능을 발휘할 수 있는 지능형검색시스템을 구현하였다.

  • PDF

기계번역을 이용한 교차언어 문서 범주화의 분류 성능 분석 (Classification Performance Analysis of Cross-Language Text Categorization using Machine Translation)

  • 이용구
    • 한국문헌정보학회지
    • /
    • 제43권1호
    • /
    • pp.313-332
    • /
    • 2009
  • 교차언어 문서 범주화(CLTC)는 다른 언어로 된 학습집단을 이용하여 문헌을 자동 분류할 수 있다. 이 연구는 KTSET으로부터 CLTC에 적합한 실험문헌집단을 추출하고, 기계 번역기를 이용하여 가능한 여러 CLTC 방법의 분류 성능을 비교하였다. 분류기는 SVM 분류기를 이용하였다. 실험 결과, CLTC 중에 다국어 학습방법이 가장 좋은 분류 성능을 보였으며, 학습집단 번역방법, 검증집단 번역방법 순으로 분류 성능이 낮아졌다. 하지만 학습집단 번역방법이 기계번역 측면에서 효율적이며, 일반적인 환경에 쉽게 적용할 수 있고, 비교적 분류 성능이 좋아 CLTC 방법 중에서 가장 높은 이용 가능성을 보였다. 한편 CLTC에서 기계번역을 이용하였을 때 번역과정에서 발생하는 자질축소나 주제적 특성이 없는 자질로의 번역으로 인해 성능 저하를 가져왔다.

SVM을 이용한 디렉토리 기반 기술정보 문서 자동 분류시스템 설계 (Design of Automatic Document Classifier for IT documents based on SVM)

  • 강윤희;박용범
    • 전기전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.186-194
    • /
    • 2004
  • 인터넷 상의 정보가 급증하여 필요한 정보를 찾고 관련된 정보를 조직화하는데 많은 시간이 소요된다. 따라서 정보접근 부하를 줄일 수 있는 자동적인 문서 분류의 중요성과 필요성이 증가하고 있다. 본 논문에서는 웹 문서의 자동 분류 시스템의 설계와 구현을 기술한다. 디렉터리 내의 학습 문서 집합을 기반으로 구성된 대표 단어 집합을 이용하여 문서 분류 모델을 학습하기 위해 SVM을 사용하였다. 본 시스템에서는 정보통신 웹 디렉터리 내의 문서로부터 추출된 단어 집합을 기반으로 SVM을 학습 시킨 후 신규 문서에 대해 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특성을 표현하기 위해 벡터공간 모델을 사용하였고 학습 데이터는 가중치를 갖는 특성 집합으로 표현되어진 긍정 및 부정 집합으로 구성하였다. 실험에서는 문서분류의 결과 및 벡터길이의 관련성을 보인다.

  • PDF

토픽모델링과 딥 러닝을 활용한 생의학 문헌 자동 분류 기법 연구 (A Study of Research on Methods of Automated Biomedical Document Classification using Topic Modeling and Deep Learning)

  • 육지희;송민
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.63-88
    • /
    • 2018
  • 본 연구는 LDA 토픽 모델과 딥 러닝을 적용한 단어 임베딩 기반의 Doc2Vec 기법을 활용하여 자질을 선정하고 자질집합의 크기와 종류 및 분류 알고리즘에 따른 분류 성능의 차이를 평가하였다. 또한 자질집합의 적절한 크기를 확인하고 문헌의 위치에 따라 종류를 다르게 구성하여 분류에 이용할 때 높은 성능을 나타내는 자질집합이 무엇인지 확인하였다. 마지막으로 딥 러닝을 활용한 실험에서는 학습 횟수와 문맥 추론 정보의 유무에 따른 분류 성능을 비교하였다. 실험문헌집단은 PMC에서 제공하는 생의학 학술문헌을 수집하고 질병 범주 체계에 따라 구분하여 Disease-35083을 구축하였다. 연구를 통하여 가장 높은 성능을 나타낸 자질집합의 종류와 크기를 확인하고 학습 시간에 효율성을 나타냄으로써 자질로의 확장 가능성을 가지는 자질집합을 제시하였다. 또한 딥 러닝과 기존 방법 간의 차이점을 비교하고 분류 환경에 따라 적합한 방법을 제안하였다.

Doc2Vec과 Word2Vec을 활용한 Convolutional Neural Network 기반 한국어 신문 기사 분류 (Categorization of Korean News Articles Based on Convolutional Neural Network Using Doc2Vec and Word2Vec)

  • 김도우;구명완
    • 정보과학회 논문지
    • /
    • 제44권7호
    • /
    • pp.742-747
    • /
    • 2017
  • 본 논문에서는 문장의 분류에 있어 성능이 입증된 word2vec을 활용한 Convolutional Neural Network(CNN) 모델을 기반으로 하여 문서 분류에 적용 시 성능을 향상시키기 위해 doc2vec을 함께 CNN에 적용하고 기반 모델의 구조를 개선한 문서 분류 방안을 제안한다. 먼저 토큰화 방법을 선정하기 위한 초보적인 실험을 통하여, 어절 단위, 형태소 분석, Word Piece Model(WPM) 적용의 3가지 방법 중 WPM이 분류율 79.5%를 산출하여 문서 분류에 유용함을 실증적으로 확인하였다. 다음으로 WPM을 활용하여 생성한 단어 및 문서의 벡터 표현을 기반 모델과 제안 모델에 입력하여 범주 10개의 한국어 신문 기사 분류에 적용한 실험을 수행하였다. 실험 결과, 제안 모델이 분류율 89.88%를 산출하여 기반 모델의 분류율 86.89%보다 2.99% 향상되고 22.80%의 개선 효과를 보였다. 본 연구를 통하여, doc2vec이 동일한 범주에 속한 문서들에 대하여 유사한 문서 벡터 표현을 생성하기 때문에 문서의 분류에 doc2vec을 함께 활용하는 것이 효과적임을 검증하였다.

TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법 (Keyword Extraction from News Corpus using Modified TF-IDF)

  • 이성직;김한준
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.59-73
    • /
    • 2009
  • 키워드 추출은 정보검색, 문서 분류, 요약, 주제탐지 등의 텍스트 마이닝 분야에서 기반이 되는 기술이다. 대용량 전자문서로부터 추출된 키워드들은 텍스트 마이닝을 위한 중요 속성으로 활용되어 문서 브라우징, 주제탐지, 자동분류, 정보검색 시스템 등의 성능을 높이는데 기여한다. 본 논문에서는 인터넷 포털 사이트에 게재되는 대용량 뉴스문서집합을 대상으로 키워드 추출을 수행하여 분야별 주제를 제시할 수 있는 키워드를 추출하는 새로운 기법을 제안한다. 기본적으로 키워드 추출을 위해 기존 TF-IDF 모델을 고찰, 이것의 6가지 변형식을고안하여 이를 기반으로 각 분야별 후보 키워드를 추출한다. 또한 분야별로 추출된 단어들의 분야간 교차비교분석을 통해 불용어 수준의 의미 없는 단어를 제거함으로써 그 성능을 높인다. 제안 기법의 효용성을 입증하기 위해 한글 뉴스 기사 문서에서 추출한 키워드의 질을 비교하였으며, 또한 주제 변화를 탐지하기 위해 시간에 따른 키워드 집합의 변화를 보인다.

  • PDF

자질 중요도 계산 기법에 의한 자동문서 범주화 (Automatic Document Categorization by the Importance of Features)

  • 이경찬;강승식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.537-539
    • /
    • 2003
  • 문서 범주화를 위해 자질을 선별하는 기법으로는 자질의 출현 빈도에 따라 범주를 대표하는 자질들을 선별하는 것이 일반적이다. 출현 빈도에 의한 자질을 선별하는 통계적인 기법은 문서의 내용을 대표하는 용어들의 중요도를 간과하는 문제가 발생한다. 본 논문에서는 학습 문서 및 실험 문서에서 자질의 중요도에 의해 범주 대표어를 선별하는 문서 범주화 기법을 제안하였으며, 역범주 빈도 및 카이제곱 통계량에 의해 자질을 선별하는 방법과 비교-실험을 하였다. 문서 범주화 모델로는 나이브 베이지언 확률 모델을 이용하였으며, 성능 평가를 위해서 웹 디렉토리에서 수집된 데이터를 이용하여 실험하였다. 본 논문에서 제안한 자질 중요도에 의한 자질 선별 기법은 용어의 출현 빈도 및 카이제곱 통계량에 의해 자질을 선별한 방법보다 더 나은 성능을 보였다.

  • PDF

문서 구조 정보에 기반한 웹 페이지 범주화 모델 (A Web Page Categorization Model Based on Document Structural Information)

  • 정성화;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.91-96
    • /
    • 1998
  • 본 논문에서는 주제범주 체계를 이용한 웹 검색이 가지는 장점을 이용 할 수 있도록 인터넷 웹 페이지들을 주제범주 체계에 따라 자동으로 분류하는 모델을 제시한다. 특히 웹 페이지 작성자들의 의도를 범주화에 반영할 수 있는 방법으로 HTML 태그를 이용한다. 즉 웹 페이지의 표현에 있어서 벡터 스페이스 모델에서의 색인어 빈도 가중치에 태그 가중치를 추가 하여 보다 좋은 성능을 얻도록 하였다. 그리고 주제범주를 표현하는데 사용되는 자질의 선정에는 기대상호정보, 상호정보 척도를, 문서간 유사도 비교에는 최근린법을 사용하였다. 전북대에서 정보탐정용으로 분류한 웹 페이지를 대상으로 실험하였으며, 기본 모델 대비 약 7%의 정확도 향상을 얻을 수 있었다.

  • PDF

문서의 의미적 구조정보를 이용한 특허 문서 분류 (Patent Document Categorization based on Semantic Structural Information)

  • 김재호;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.28-34
    • /
    • 2005
  • 특허 검색은 수많은 특허 문서 중에서 특정 해당분야의 문서 집합 내에서 검색을 수행하기 때문에 정확한 특허 분류에 크게 의존하게 된다. 이러한 특허 분류의 중요성에 덧붙여, 특허 문서의 수가 빠르게 증가하게 되면서 특허를 자동으로 분류하려는 요구가 더욱 필요하게 되었다. 특허문서는 일반문서와는 달리 구조화되어 있기 때문에 특허분류를 하기 위해서는 이러한 점이 고려되어야 한다. 본 논문에서는 k-NN 방법을 이용하여 일본어 특허 문서를 자동으로 분류하는 방법을 제안한다. 훈련집합으로부터 유사문서를 검색할 때, 구조화되어 있는 특허 문서의 특징을 이용한다. 문서 전체가 아닌 (기존 기술), (응용 분야), (해결하고자 하는 문제), (문제를 해결하려는 방법) 등의 세분화된 요소끼리 비교하여 유사성을 계산한다. 특허 문서에는 사용자가 정의한 많은 의미 요소가 있기 때문에 먼저 이들을 군집화한 후에 이용한다. 실험 결과 제안한 방법이 특허문서를 그대로 이용하는 것보다는 74%, 특허문서에 나타난 <요약>, <청구항>, <상세한 설명>의 큰 구조 정보를 이용하는 것보다는 4%의 성능 향상을 가져왔다.

  • PDF

Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류 (Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm)

  • 고수정;이정현
    • 정보처리학회논문지B
    • /
    • 제8B권3호
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF