• Title/Summary/Keyword: document categorization

Search Result 73, Processing Time 0.034 seconds

Construction of Answer Sets using Automatic Categorization (자동분류를 이용한 정답문서집합 구축)

  • Chang, Moon-Soo;Oh, Hyo-Jung;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.494-499
    • /
    • 2001
  • 최근의 인터넷 정보검색은 방대한 정보의 수용과 지능적이고 개인화된 검색 결과 요구라는 사뭇 상반된 요구를 만족시켜야 한다. 기계적으로 키워드를 매칭시켜 나오는 문서를 사용자에게 맡기는 식의 검색은 더 이상 환영을 받지 못한다. 우리는 이러한 추세에 맞추어 의미기반 정보검색에 필요한 개념망과 정답문서집합으로 구성된 지식베이스를 제안한 바 있다. 본 논문에서는 방대한 구조의 개념망과 연결되는 정답문서집합을 유동적인 인터넷 환경에 적용하기 위해 자동으로 구축하는 시스템을 제시한다. 자동구축은 문서분류(document categorization) 기술을 활용하여 개념어에 문서를 할당하는 방법과 속성에 문서를 할당하는 방법으로 나누어 이루어진다. 제시한 방법은 실험을 통하여 기본적인 속성 할당에는 상당한 효과가 있는 것으로 판단되었고, 일부 미할당 문서에 대해서는 클러스터링과 같은 다른 알고리즘이 필요하다.

  • PDF

Clustering of Web Document Exploiting with the Co-link in Hypertext (동시링크를 이용한 웹 문서 클러스터링 실험)

  • 김영기;이원희;권혁철
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.2
    • /
    • pp.233-253
    • /
    • 2003
  • Knowledge organization is the way we humans understand the world. There are two types of information organization mechanisms studied in information retrieval: namely classification md clustering. Classification organizes entities by pigeonholing them into predefined categories, whereas clustering organizes information by grouping similar or related entities together. The system of the Internet information resources extracts a keyword from the words which appear in the web document and draws up a reverse file. Term clustering based on grouping related terms, however, did not prove overly successful and was mostly abandoned in cases of documents used different languages each other or door-way-pages composed of only an anchor text. This study examines infometric analysis and clustering possibility of web documents based on co-link topology of web pages.

  • PDF

A Corpus Construction System of Consistent Document Categorization and Keyword Extraction (일관성 있는 문서분류 및 키워드 추출을 위한 말뭉치 구축도구)

  • Jeong, Jae-Cheol;Park, So-Young;Chang, Ju-No;Kihl, Tae-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.675-676
    • /
    • 2010
  • As the number of documents rapidly increases in the web environment, the efficient document classification approaches have been required to retrieve the desired information from too many documents. In this paper, we propose a corpus construction tool to annotate document classification information such as category, keywords, and usage to each product description document. The proposed tool can help a human annotator to correctly identify this information by providing the verification step to check the input results of other human annotators. Also, the human annotator can construct the corpus anytime anywhere by using the web-based proposed system.

  • PDF

Feature Selection with Non-linear PCA in Text Categorization (대용량 문서분류에서의 비선형 주성분 분석을 이용한 특징 추출)

  • 신형주;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.146-148
    • /
    • 1999
  • 문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.

  • PDF

A Study on the Feature Selection for Automatic Document Categorization (자동문헌분류를 위한 대표색인어 추출에 관한 연구)

  • 황재영;이응봉
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2003.08a
    • /
    • pp.55-64
    • /
    • 2003
  • 인터넷 학술정보자원이 급증하고 있는 가운데 자동문헌분류에 대한 관심과 필요성도 늘어가고 있다. 자동문헌분류에 관한 실험은 전처리 단계인 대표색인어 추출과 추출된 대표색인어의 분류성능 평가 실험으로 구분 할 수 있는데, 본 연구에서는 우선 대표색인어 추출을 위해 다양한 대표색인어(자질) 추출 방법에 따른 색인어 성능평가 실험 및 최적의 대표색인어 개수 선정 실험을 수행하였다.

  • PDF

Automatic Document Categorization Using K-Nearest Neighbor Algorithm and Object-Oriented Thesaurus (K-NN과 객체 지향 시소러스를 이용한 웹 문서 자동 분류)

  • 방선이;양재동
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.145-147
    • /
    • 2001
  • 문서 자동 분류에는 통계적인 기법과 machine learning 기법의 맡은 알고리즘들이 이용되고 있다. 통계적인 기법 알고리즘을 이용한 문서 분류는 높은 성능을 보이지만 분류할 카테고리가 둘 이상인 경우가 빈번할 경우에는 정확률이 급격히 저하되는 단점이 있다. 본 논문에서는 K-NN알고리즘을 이용하여 일차적인 문서 분류를 수행한 후 특정 카테고리로 분류하기에 애매모호한 경우가 생길 경우 시소러스의 일반화 관계와 연관화 관계를 이용하여 모호성을 줄임으로써 문서 자동 분류의 성능을 높이기 위한 새 기법을 제안한다.

  • PDF

Text Document Categorization using FP-Tree (FP-Tree를 이용한 문서 분류)

  • Park, Yong-Ki;Kim, Hwang-Soo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.589-591
    • /
    • 2005
  • 기존의 문서 분류 방법들은 대게 기존의 기계 학습의 방법을 그대로 가져오거나 문서라는 데이터에 맞춰 약간의 변형을 가한 방법들이 대부분이다. 본 논문에서는 기존의 방법에서 벗어나 데이터 마이닝 분야에서 쓰이는 FP-Tree 방법을 이용하여 문서내의 문장들의 패턴을 저장하고 이를 사용하여 문서 분류를 하는 방법을 소개한다.

  • PDF

Hierarchical Overlapping Document Clustering for Efficient Categorization of Semantic Information (의미정보의 효율적인 분류를 위한 계층적 중복 문서 클러스터링)

  • 강동혁;주길홍;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.175-177
    • /
    • 2001
  • 기존의 문서 클러스터링 알고리즘은 모든 문서가 각각 하나의 클러스터에만 할당되도록 설계되어 문서에 여러 개의 주제가 포함되어 있을지라도 문서는 유사도 비교에 의해 오직 하나의 플러스터에 포함된다는 단점이 있다. 본 연구에서는 이러한 문서 플러스터링 방법의 한계를 파악하기 위해 문서가 여러 개의 클러스터에 포함될 수 있는 계층적 중복 문서 클러스터링을 제안한다. 또한, 문서 클러스터링의 정확도를 높이기 위해서 불용어 제거 알고리즘을 이용해 불용어를 제거하여 클러스터링에 사용되는 키워드를 선별하고, 단어가중치 산출을 위한 TF*NHDF 공식을 제안한다.

  • PDF

Hierarchical Automatic Classification of News Articles based on Association Rules (연관규칙을 이용한 뉴스기사의 계층적 자동분류기법)

  • Joo, Kil-Hong;Shin, Eun-Young;Lee, Joo-Il;Lee, Won-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.6
    • /
    • pp.730-741
    • /
    • 2011
  • With the development of the internet and computer technology, the amount of information through the internet is increasing rapidly and it is managed in document form. For this reason, the research into the method to manage for a large amount of document in an effective way is necessary. The conventional document categorization method used only the keywords of related documents for document classification. However, this paper proposed keyword extraction method of based on association rule. This method extracts a set of related keywords which are involved in document's category and classifies representative keyword by using the classification rule proposed in this paper. In addition, this paper proposed the preprocessing method for efficient keywords creation and predicted the new document's category. We can design the classifier and measure the performance throughout the experiment to increase the profile's classification performance. When predicting the category, substituting all the classification rules one by one is the major reason to decrease the process performance in a profile. Finally, this paper suggested automatically categorizing plan which can be applied to hierarchical category architecture, extended from simple category architecture.

A Study on the Performance Improvement of Rocchio Classifier with Term Weighting Methods (용어 가중치부여 기법을 이용한 로치오 분류기의 성능 향상에 관한 연구)

  • Kim, Pan-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.1
    • /
    • pp.211-233
    • /
    • 2008
  • This study examines various weighting methods for improving the performance of automatic classification based on Rocchio algorithm on two collections(LISA, Reuters-21578). First, three factors for weighting are identified as document factor, document factor, category factor for each weighting schemes, the performance of each was investigated. Second, the performance of combined weighting methods between the single schemes were examined. As a result, for the single schemes based on each factor, category-factor-based schemes showed the best performance, document set-factor-based schemes the second, and document-factor-based schemes the worst. For the combined weighting schemes, the schemes(idf*cat) which combine document set factor with category factor show better performance than the combined schemes(tf*cat or ltf*cat) which combine document factor with category factor as well as the common schemes (tfidf or ltfidf) that combining document factor with document set factor. However, according to the results of comparing the single weighting schemes with combined weighting schemes in the view of the collections, while category-factor-based schemes(cat only) perform best on LISA, the combined schemes(idf*cat) which combine document set factor with category factor showed best performance on the Reuters-21578. Therefore for the practical application of the weighting methods, it needs careful consideration of the categories in a collection for automatic classification.