• Title/Summary/Keyword: docking guidance system

Search Result 10, Processing Time 0.024 seconds

Design of Guidance Law for Docking of Unmanned Surface Vehicle (무인선의 도킹을 위한 유도법칙 설계)

  • Woo, Joohyun;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.208-213
    • /
    • 2016
  • This paper proposes a potential field-based guidance law for docking a USV (unmanned surface vehicle). In most cases, a USV without side thrusters is an under-actuated system. Thus, there are undockable regions near docking stations where a USV cannot dock to a docking station without causing a collision or backward motion. This paper suggest a guidance law that prevents a USV from enter such a region by decreasing the lateral error to the docking station at the initial stage of the docking process. A Monte-carlo simulation was performed to validate the performance of the proposed method. The proposed method was compared to conventional guidance laws such as pure pursuit guidance and pure/lead pursuit guidance. As a result, the collision angle and lateral distance error of proposed method tended to have lower values compared to conventional methods.

Implementation of Testbed of Guidance System for Docking of Ship Using Location Based UWB Sensor (위치기반 UWB 센서를 이용한 선박 접안 유도시스템의 테스트베드 구현)

  • Shin, Do-Sung;Lee, Seong-Ro;Oh, Il-Hwan;Jung, Min-A
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1314-1321
    • /
    • 2010
  • This system configures a position Sensor as installing on the ship and a guidance system docking of ship what distinguish of the ship about the use and size. The maintain system is received the result of distinction via UWB reader. This system send a information of ship of docking position to user. Thus it suggests the safety to prevent from crash among ships and saves energy and stop waste. The proposed system periodically updates the information of docking position of the ship and monitors in real-time according to the user's request from personal mobile devices. In this paper, we implement of a guidance system Testbed for docking of the ship using position UWB sensor. And user is provided convenience to find easily user's ship in docking area through user interface with Java. Addedly it is possible to prevent ship theft.

Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Kim, Sang-Hyun;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

Study on the Docking Algorithm for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 알고리즘에 관한 연구)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Lee, Pan-Mook;Kim, Sang-Hyun;Lim, Geun-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.33-39
    • /
    • 2007
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking device and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI ocean engineering water tank. As AUV ISIMI approachs the docking device, there is some cases of showing an unstable attitude, because the lights which is on Image Frame are disappeared. So we propose the docking algorithm that is fixing the rudder and stem, if the lights on image frame are reaching the specific area in the Image Frame. Also we propose the new docking device, which has a variety of position and light number. In this paper, we intend to solve the some cases of showing an unstable attitude that were found in the testing, which, first, will be identified the validity via simulation.

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

Mission Management Technique for Multi-sensor-based AUV Docking

  • Kang, Hyungjoo;Cho, Gun Rae;Kim, Min-Gyu;Lee, Mun-Jik;Li, Ji-Hong;Kim, Ho Sung;Lee, Hansol;Lee, Gwonsoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.181-193
    • /
    • 2022
  • This study presents a mission management technique that is a key component of underwater docking system used to expand the operating range of autonomous underwater vehicle (AUV). We analyzed the docking scenario and AUV operating environment, defining the feasible initial area (FIA) level, event level, and global path (GP) command to improve the rate of docking success and AUV safety. Non-holonomic constraints, mounted sensor characteristic, AUV and mission state, and AUV behavior were considered. Using AUV and docking station, we conducted experiments on land and at sea. The first test was conducted on land to prevent loss and damage of the AUV and verify stability and interconnection with other algorithms; it performed well in normal and abnormal situations. Subsequently, we attempted to dock under the sea and verified its performance; it also worked well in a sea environment. In this study, we presented the mission management technique and showed its performance. We demonstrated AUV docking with this algorithm and verified that the rate of docking success was higher compared to those obtained in other studies.

Development of a Matlab Toolbox for Guidance & Traction Control Designs of an Articulated Transportation Vehicle (굴절차량의 안내/추진 제어 설계용 Toolbox)

  • Min, Kyung-Deuk;Yun, Kyoung-Han;Kim, Young Chol;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2074-2079
    • /
    • 2008
  • This paper presents a software toolbox with $Matlab^{(R)}$ developed for the various performance analysis of an automatic guidance system of the Bimodal Tram. The Bimodal Tram is a new kind of transportation vehicle which could be an all-wheel steered multiple-articulated vehicle. This vehicle has to be equipped with an automatic guidance, traction/braking, and docking system, In the stage of developing such a system, its validities and performances should be verified under various operation conditions. For the purpose of doing these things through simulation, this toolbox has been developed and demonstrated well by applying it to the KRRI model.

A DS-UWB Radar System Based on Correlation Accumulation (상관값 누적 기반 DS-UWB 레이더 시스템)

  • Lee, Youngpo;Yoon, Seokho;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.359-364
    • /
    • 2013
  • In this paper, we propose a direct sequence ultra wideband (DS-UWB) radar system based on correlation accumulation in the fields of the ship traffic control and the safe ship operation including docking guidance systems. The proposed DS-UWB radar system averages out the noise by accumulating correlator outputs, and thus, provides a reliable distance estimation performance with a shorter estimation time compared with conventional DS-UWB radar systems. From numerical results, it is confirmed that the proposed DS-UWB radar system has not only a shorter average correlation processing time, but also a better distance estimation performance.

Underwater Guidance System for AUV using Optical Sensor Array (광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • In this paper, a new study was performed on the docking of AUV to docking station using light and light sensor system under the water. For this, a guiding system for AUV loading sensor system composed of lense, light sensor, signal processor, and processor and docking system with LED are proposed. An analysis on light sensor system and light-collecting lense to obtain accurate relative angle and measurement accuracy was performed. To prove this, the system was built and a basic experiment was performed. Finally, the feasibility of the developed docking system was verified the test in the water tank.

Implementation of an Algorithm for the Estimation of Range and Direction of an Underwater Vehicle Using MFSK Signals (MFSK를 이용한 잠수정의 거리 및 방향 예측알고리즘 구현)

  • KIM SEA-MOON;LEE PAN-MOOK;LEE CHONG-MOO;LIM YONG-KON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.249-256
    • /
    • 2004
  • KRISO/KORDI is currently developing a deep-sea unmanned underwater vehicle (UUV) system which is composed of a launcher, an ROV, and an AUV. Two USBL acoustic positioning systems will be used for UUV's navigation. One is for the deep sea positioning of all three vehicles and the other is for AUV's guidance to the docking device on the launcher. In order to increase the position accuracy MFSK(Multiple Frequency Shift Keying) broadband signal will be used. As the first step to the implementation of a USBL system, this paper studies USBL positioning algorithm using MFSK signals. Firstly, the characteristics of MFSK signal is described with various MFSK parameters: number of frequencies, frequency step, center frequency, and pulse length. Time and phase delays between two received signals are estimated by using cross-correlation and cross-spectrum methods. Finally an USBL positioning algorithm is derived by converting the delays to difference of distances and applying trigonometry. The simulation results show that the position accuracy is improved highly when both cross-correlation and cross-spectrum of MFSK signals are used simultaneously.

  • PDF