• Title/Summary/Keyword: docking

Search Result 626, Processing Time 0.026 seconds

In - Silico approach and validation of JNK1 Inhibitors for Colon Rectal Cancer Target

  • Bavya, Chandrasekhar;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.145-152
    • /
    • 2022
  • Colon rectal cancer is one of the frequently diagnosed cancers worldwide. In recent times the drug discovery for colon cancer is challenging because of their speedy metastasis and morality of these patients. C-jun N-terminal kinase signaling pathway controls the cell cycle survival and apoptosis. Evidence has shown that JNK1 promotes the tumor progression in various types of cancers like colon cancer, breast cancer and lung cancer. Recent study has shown that inhibiting, JNK1 pathway is identified as one of the important cascades in drug discovery. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened ChEMBL dataset against JNK1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top compounds to be more specific with JNK1 comparing the affinity with JNK2 and JNK3.The drugs which exhibited higher binding were subjected to Conceptual - Density functional theory. The results showed mainly Entrectinib and Exatecan showed better binding to the target.

Enantiodiscrimination and molecular docking study of chiral amines as 2-hydroxynaphthaldimine derivatives using amylose derived chiral selectors

  • Suraj Adhikari;Inhee Kang;Swapnil Bhujbal;Wonjae Lee
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.306-314
    • /
    • 2024
  • This study describes the liquid chromatographic enantiomer separation of three typical chiral amines (α-methylbenzylamine, 2-amino-4-methyl-1-pentanol, and 1-methylheptylamine) as 2-hydroxynaphthaldimine derivatives using six amylose trisphenylcarbamates derived chiral stationary phases (CSPs). It was observed that the structural nature of three chiral amines and the structures of amylose chiral selectors can affect their chiral recognition ability. Among the three analytes as 2-hydroxynaphthaldimine derivatives, in general, the greatest enantioselectivities of aromatic amine analyte (α-methylbenzylamine) were achieved on amylose trisphenylcarbamate derived CSPs and were followed by amino alcohol analyte (2-amino-4-methyl-1-pentanol), and aliphatic amine analyte (1-methylheptylamine). Also, the enantiodiscrimination abilities obtained on the two CSPs, Chiralpak ID and Chiralpak IF, were selectively higher than the other four amylose trisphenylcarbamate derived CSPs for the studied analytes. The underlying chiral recognition mechanism between 2-amino-4-methyl-1-pentanol as 2-hydroxynaphthaldimine derivatives and amylose tris(3,5-dimethylphenylcarbamate) chiral selector of Chiralpak AD-H and Lux Amylose-1 was elucidated by molecular docking study, and it was observed that the intermolecular hydrogen bonding interactions by hydroxyl moiety on the amino alcohol analyte as 2-hydroxynaphthaldimine derivatives were the main interactive forces driving the chiral separation. The obtained binding energies between 2-amino-4-methyl-1-pentanol analyte as 2-hydroxynaphthaldimine derivative and amylose tris(3,5-dimethylphenylcarbamate) chiral selector were in agreement with the experimentally determined enantioseparation and elution order by chiral HPLC.

Prediction and Analysis of Ligands against Estrogen Related Receptor Alpha

  • Chitrala, Kumaraswamy Naidu;Yeguvapalli, Suneetha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2371-2375
    • /
    • 2013
  • Breast cancer is one of the most common malignancies in women around the world. Among the various hormonal types of breast cancer, those that are estrogen receptor (ER) positive account for the majority. Among the estrogen related receptors, estrogen related receptor ${\alpha}$ is known to have a potential role in breast cancer and is one of the therapeutic target. Hence, prediction of novel ligands interact with estrogen related receptor alpha is therapeutically important. The present study, aims at prediction and analysis of ligands from the KEGG COMPOUND database (containing 10,739 entries) able to interact against estrogen receptor alpha using a similarity search and molecular docking approach.

A Docking Study of UDP-N-Acetylglucosamine Enolpyruvyl Transferase from Haemophilus influenzae in Complex with Inhibitors

  • Yoon, Hye-Jin;Mikami, Bunzo;Park, Hyun-Ju;Yoo, Ja-Kyung;Suh, Se-Won
    • Korean Journal of Crystallography
    • /
    • v.18 no.1_2
    • /
    • pp.10-15
    • /
    • 2007
  • UDP-N-acetylglucosamine enolpyruvyl transferase (MurA; EC 2.5.1.7) catalyzes the first committed step of peptidoglycan biosynthesis in bacteria, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. Because the crystallization condition contained a high concentration of ammonium sulfate, our inhibitor binding studies were not successful. Therefore, we employed a docking approach to investigate the inhibitor binding. Our results will be useful in structure-based design of specific inhibitors of MurA for antibacterial discovery.

Protein-protein Interaction Analysis of Bradykinin Receptor B2 with Bradykinin and Kallidin

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.74-77
    • /
    • 2017
  • Bradykinin receptor B2 (B2R) is a GPCR protein which binds with the inflammatory mediator hormone bradkynin. Kallidin, a decapeptide, also signals through this receptor. B2R is crucial in the cross-talk between renin-angiotensin system (RAS) and the kinin-kallikrein system (KKS) and in many processes including vasodilation, edema, smooth muscle spasm and pain fiber stimulation. Thus the structural study of the receptor becomes important. We have predicted the peptide structures of Bradykinin and Kallidin from their amino acid sequences and the structures were docked with the receptor structure. The results obtained from protein-protein docking could be helpful in studying the B2R structural features and in the pathophysiology in various diseases related to it.