• 제목/요약/키워드: diurnal and seasonal variations

검색결과 69건 처리시간 0.026초

1994년 자료에 나타난 제주도 고산에서의 $SO_2$ 농도 변화 특성 (Characteristics of the Baseline SO$_{2}$ Concentration Variations at Kosan, Cheju Island, Retrieved from 1994's Data)

  • 장광미;이호근;서명석;박경윤;강창희;허철구;심상규
    • 한국대기환경학회지
    • /
    • 제12권5호
    • /
    • pp.541-554
    • /
    • 1996
  • A set of 1994 data was analyzed to investigate the characteristics of background surface SO$_{2}$ concentrations at Kosan, Cheju Island, Korea. The SO$_{2}$ concentrations at Kosan site show a seasonal variation with a minimum(0.46 ppb) in summer, maximum(1.02 ppb) in spring and an annual mean of 0.83 ppb. These values were 4-7 times higher than those measured in other remote areas, such as Bermuda and Oki Island, but they were similar to the baseline concentrations of other sites in the world. The diurnal variation of SO$_{2}$ concentrations was very small and it shows a peak at 10 am in spring and fall, 2 pm in summer, and 1 pm in winter, respectively. Correlations between local meteorological parameters and SO$_{2}$ concentrations were mot significant. This suggests that the variations of the Kosan's SO$_{2}$ comcentrations were relatively independent on local meteorological variables. Backward trajectory analysis results showed that the seasonal variation of the OS$_{2}$ concentration was mainly due to the inflow of air masses from the continent in spring and from the Pacific Ocean im summer. The results also revealed that the air masses with the highest SO$_{2}$ concentration came through China or the Korea peninsula in spring and through Japan during summer. It was found that the SO$_{2}$ concentrations at Kosan were under the influence of passage of air masses arriving at this site.

  • PDF

地下터널 굴착作業場內 作業環境豫測 (Prediction of the Environmental Conditions in Underground Tunnelling Spaces)

  • 박희봉
    • 터널과지하공간
    • /
    • 제2권1호
    • /
    • pp.116-122
    • /
    • 1992
  • A comprehensive, nonsteady state, computer simulation program for the environmental conditions in advancing tunnels (the HEADSIM simulation program) is constructed and successfully validated with heat balance amongst all heat sources, and with mass conservation amongst various airflows including the leakage air from ducts, under timedependent variations of inlet air conditions. which include sudden, diurnal and seasonal changes. Heat conduction in the wall strata and face strata is simulated with most complicated boundary conditions using the finite difference method, and the climatic conditions in roadway sections which contain air ducts, booster fan, spray cooler, compressed air pipes, cold water pipes, return water pipes, machinery and broken rock are simulated taking into account the variations of face operation and the heat storage mechanism in the strata. The limitations of simulation time steps and roadway section lengths are defined according to the stability criteria satisfying the principles of thermodynamics. Variations of heat transfer coefficients, which are newly set, and those of wetness factors are taken into account according to the variations of other parameters and the stepwise advance of the face. Newly-derived formulae are used for computing the air duct leakage and the pressure inside of the duct. A new concept of an 'imaginary duct' is introduced to simulate the climatic conditions in tunnels during holiday periods, which directly affect conditions on subsequent working days under the consideration of natural convection. A subsidiary program (the WALLSIM simulation program) is made to compute the dimensionless tunnel surface temperatures and to compare the results with those from analytical approaches, and to demonstrate the stability, convergence and accuracy of the strata heat conduction simulation, adopting the finite difference method. The WALLSIM also has wide applications, including those for the computation of age coefficients.

  • PDF

울산지역의 기상 특성: 기온과 바람을 중심으로 (Meteorological Characteristics in the Ulsan Metropolitan Region: Focus on Air Temperature and Winds)

  • 오인보;방진희;김양호
    • 한국대기환경학회지
    • /
    • 제31권2호
    • /
    • pp.181-194
    • /
    • 2015
  • Spatial-temporal meteorological features of the Ulsan metropolitan region (UMR) were analyzed using observations and high-resolution numerical modeling. Long-term trend analysis (1970~2013) showed a significant increase of $0.033^{\circ}Cyr^{-1}$ in the 5-year moving average temperature, although detailed short-term features varied, whereas wind speed and relative humidity over the same period displayed clear decreases of $-0.007ms^{-1}$ and $-0.29%yr^{-1}$, respectively. These trends indicate the effects of regional climate change and urbanization in the UMR. Seasonal variations averaged for the most recent three years, 2011~2013, showed that temperatures in three different regions (urban/industrial, suburban, coastal areas) of the UMR had similar seasonality, but significant differences among them were observed for a certain season. Urban and industrial complex regions were characterized by relatively higher temperatures with large differences (max.: $3.6^{\circ}C$) from that in the coastal area in summer. For wind speed, strong values in the range from 3.3 to $3.9ms^{-1}$ occurred in the coastal areas, with large differences clearly shown between the three regions in September and October. Diurnal variations of temperature were characterized by pronounced differences during the daytime (in summer) or nighttime (in winter) between the three regions. Results from the WRF modeling performed for four months of 2012 showed large variations in gridaverage temperature and winds in the UMR, which displayed significant changes by season. Especially, a clear temperature rise in the urban center was identified in July ($0.6^{\circ}C$ higher than nearby urban areas), and overall, relatively weak winds were simulated over urban and inland suburban regions in all seasons.

우리나라 산악분지의 여름철 기온감률 변화 -2009년 양구 펀치볼을 사례로- (Variations of Summertime Temperature Lapse Rate within a Mountainous Basin in the Republic of Korea -A case study of Punch Bowl, Yanggu in 2009-)

  • 최광용;이보라;강신규;존 텐후넨
    • 한국지역지리학회지
    • /
    • 제16권4호
    • /
    • pp.339-354
    • /
    • 2010
  • 본 연구에서는 2009년 여름 강원도 양구군 해안분지(펀치볼)에 구축한 자동기상관측망 기온자료를 분석하여 여름철 하루 중 시간진행 또는 일기패턴에 따른 산간분지 내 기온감률 변화 특징을 밝히고자 한다. 산정부와 분지 내 사이에 형성되는 여름철 일평균 기온감률은 $-0.53^{\circ}C$/100m이나, 일변화에 의해 새벽 6시경에 $-0.25^{\circ}C$/100m의 최저, 오후 4~5시경에 $-0.85^{\circ}C$/100m의 최고값을 나타낸다. 종관일기 패턴 별 일평균 기온감률은 강수일($-0.63^{\circ}C$/100m), 집중호우일($-0.53^{\circ}C$/100m), 약간 구름 낀 날($-0.47^{\circ}C$/100m), 맑은날($-0.39^{\circ}C$/100m) 순으로 높게 나타난다. 여름철 맑은날 새벽에는 분지 내에서 기온역전현상으로 냉기호가 형성되는 반면, 호우일에는 구름에 의한 복사냉각효과 감소로 온기호가 형성된다.

  • PDF

충북 청원군의 안개, 이슬, 서리의 산성도 연구 (An Acidity Study of Fog, Dew and Frost Observed in Chongwon, Choongbook)

  • 정용승;김태군
    • 한국대기환경학회지
    • /
    • 제8권1호
    • /
    • pp.45-51
    • /
    • 1992
  • A study on acidity in fog, dew and frost was carried out. Samples were taken during May 1990-February 1991 at two sites in Chongwon, Choongbook. The acidity of dew and of fog collected from grass at site A was 4.89 and 5.46, respectively. Dew in summer showed very strong acidity. The volume of dew deposited on grass was much less than the volume of rain, but dew is effective to diffuse acid predursors and acid materials. Dew and fog can remove more effectively atmospheric acid materiasl deoposited on grass by diurnal turbulent motion rather than direct absorption of acid predursors and materials in the atmosphere. In a polluted area, acidic dew and fog can be occurred by the direct absorption and oxidation of acidic predursors in the atmosphere as well as the role of wet removal on grass surface. Acidity of frost collected on teflon surface showed little difference to acidity of dew and fog on teflon surface. This suggests a similar absorption mechanism of atmospheric precursors and materials into dew and frost in the atmosphere. Strong acidity in dew, fog and frost appeared to occur from local pollution sources of several ten kilometres. In particular, strong acidity in dew, fog, and frost together with acid rain can accelerate a damage in ecosystems. Discussion is made on scientific analyses and seasonal variations of acidity of fog, dew and frost. A mechanism on acidification of fog, dew and frost is also discussed.

  • PDF

Statistical Analysis of Pc1 Pulsations Observed by a BOH Magnetometer

  • Kim, Jiwoo;Hwang, Junga;Kim, Hyangpyo;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.19-27
    • /
    • 2020
  • Pc1 pulsations are important to consider for the interpretation of wave-particle interactions in the Earth's magnetosphere. In fact, the wave properties of these pulsations change dynamically when they propagate from the source region in the space to the ground. A detailed study of the wave features can help understanding their time evolution mechanisms. In this study, we statistically analyzed Pc1 pulsations observed by a Bohyunsan (BOH) magneto-impedance (MI) sensor located in Korea (L = 1.3) for ~one solar cycle (November 2009-August 2018). In particular, we investigated the temporal occurrence ratio of Pc1 pulsations (considering seasonal, diurnal, and annual variations in the solar cycle), their wave properties (e.g., duration, peak frequency, and bandwidth), and their relationship with geomagnetic activities by considering the Kp and Dst indices in correspondence of the Pc1 pulsation events. We found that the Pc1 waves frequently occurred in March in the dawn (1-3 magnetic local time (MLT)) sector, during the declining phase of the solar cycle. They generally continued for 2-5 minutes, reaching a peak frequency of ~0.9 Hz. Finally, most of the pulsations have strong dependence on the geomagnetic storm and observed during the early recovery phase of the geomagnetic storm.

Atmospheric Carbon Dioxide Levels in Garhwal Himalaya, India

  • Anthwal, Ashish;Joshi, V.;Joshi, S.C;Sharma, Archana;Kim, Ki-Hyun
    • 한국지구과학회지
    • /
    • 제30권5호
    • /
    • pp.588-597
    • /
    • 2009
  • Measurements of atmospheric $CO_2$ were made in the mountainous region of Srinagar-Garhwal, India (January to December 2006). Concentrations of $CO_2$ averaged $393\pm4.9$ ppm in 2006. Daily variations of $CO_2$ values showed minimum during the daytime (376.2 ppm) and peaked in the morning/evening (410.1 ppm). At monthly intervals, the $CO_2$ values varied from $367\pm11.14$ (May) to $425.2\pm13.54$ ppm (March). If divided on a seasonal basis, the values declined to minimum amounts in post-monsoon ($389.9\pm9.0$ ppm) and reached maximums during winter ($397.1\pm11.6$ ppm). Although phenology is significant in controlling $CO_2$ levels, short-term changes cannot be explained without the anthropogenic perturbations (e.g., vehicular pollution and forest fires). The $CO_2$ concentrations in Srinagar-Garhwal (393.4 ppm) were generally higher than those of other major monitoring locations around the world.

대구지역의 기상조건에 따른 도시열섬강도의 계절별 변화특성 (On the Seasonal Variation of Urban Heat Island Intensity According to Meteorological Condition in Daegu)

  • 안지숙;김해동
    • 한국환경과학회지
    • /
    • 제15권6호
    • /
    • pp.527-532
    • /
    • 2006
  • The purpose of this study is to clarify the characteristic of urban heat island intensity in urban area formed at a basin. Thermal environments for basin-type cities are influenced by significant topographic relief winds. In this study, we analyzed the diurnal variations of the heat island intensity according to meteorological condition and season using AWS(Automatic Weather observation System) data in Daegu Metropolitan area for 1 year(3/April, 2003 $\sim$ 2/April, 2004). In this study, we defined the urban heat island intensity as the air temperature difference between two points, the downtown and the suburban area. The suburban area is located at valley mouth around the western tip of Daegu. The results are summarized as follows; 1. The maximum heat island intensity was recorded at early morning under the meteorological conditions, calm and clear 2. The heat island intensity was strong in the order of winter, fall, spring and summer. 3. The heat island intensity came out minus values in the afternoon. This phenomenon is known as a com mon for basin-type cities. 4. The heat island intensity was twice or more in clear and calm than not so.

파장별 지표 자외선 복사량을 이용한 SARS-CoV-2 바이러스 비활성화 시간 추정 연구 (Estimation of the SARS-CoV-2 Virus Inactivation Time Using Spectral Ultraviolet Radiation)

  • 박선주;이윤곤;박상서
    • 대기
    • /
    • 제32권1호
    • /
    • pp.51-60
    • /
    • 2022
  • Corona Virus Disease 19 pandemic (COVID-19) causes many deaths worldwide, and has enormous impacts on society and economy. The COVID-19 was caused by a new type of coronavirus (Severe Acute Respiratory Syndrome Cornonavirus 2; SARS-CoV-2), which has been found that these viruses can be effectively inactivated by ultraviolet (UV) radiation of 290~315 nm. In this study, 90% inactivation time of the SARS-CoV-2 virus was analyzed using ground observation data from Brewer spectrophotometer at Yonsei University, Seoul and simulation data from UVSPEC for the period of 2015~2017 and 2020. Based on 12:00-13:00 noon time, the shortest virus inactivation time were estimated as 13.5 minutes in June and 4.8 minutes in July/August, respectively, under all sky and clear sky conditions. In the diurnal and seasonal variations, SARS-CoV-2 could be inactivated by 90% when exposed to UV radiation within 60 minutes from 10:00 to 14:00, for the period of spring to autumn. However, in winter season, the natural prevention effect was meaningless because the intensity of UV radiation weakened, and the time required for virus inactivation increased. The spread of infectious diseases such as COVID-19 is related to various and complex interactions of several variables, but the natural inactivation of viruses by UV radiation presented in this study, especially seasonal differences, need to be considered as major variables.

Assessments of the GEMS NO2 Products Using Ground-Based Pandora and In-Situ Instruments over Busan, South Korea

  • Serin Kim;Ukkyo Jeong;Hanlim Lee;Yeonjin Jung;Jae Hwan Kim
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Busan is the 6th largest port city in the world, where nitrogen dioxide (NO2) emissions from transportation and port industries are significant. This study aims to assess the NO2 products of the Geostationary Environment Monitoring Spectrometer (GEMS) over Busan using ground-based instruments (i.e., surface in-situ network and Pandora). The GEMS vertical column densities of NO2 showed reasonable consistency in the spatiotemporal variations, comparable to the previous studies. The GEMS data showed a consistent seasonal trend of NO2 with the Korea Ministry of Environment network and Pandora in 2022, which is higher in winter and lower in summer. These agreements prove the capability of the GEMS data to monitor the air quality in Busan. The correlation coefficient and the mean bias error between the GEMS and Pandora NO2 over Busan in 2022 were 0.53 and 0.023 DU, respectively. The GEMS NO2 data were also positively correlated with the ground-based in-situ network with a correlation coefficient of 0.42. However, due to the significant spatiotemporal variabilities of the NO2, the GEMS footprint size can hardly resolve small-scale variabilities such as the emissions from the road and point sources. In addition, relative biases of the GEMS NO2 retrievals to the Pandora data showed seasonal variabilities, which is attributable to the air mass factor estimation of the GEMS. Further studies with more measurement locations for longer periods of data can better contribute to assessing the GEMS NO2 data. Reliable GEMS data can further help us understand the Asian air quality with the diurnal variabilities.