• Title/Summary/Keyword: disulfide reductase

Search Result 26, Processing Time 0.02 seconds

Reductive Depolymerization of Bovine Thyroglobulin Multimers via Enzymatic Reduction of Protein Disulfide and Glutathiony­lated Mixed Disulfide Linkages

  • Liu Xi-Wen;Sok Dai-Eun
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1065-1072
    • /
    • 2005
  • The nascent thyroglobulin (Tg) multimer molecule, which is generated during the initial fate of Tg in ER, undergoes the rapid reductive depolymerization. In an attempt to determine the depolymerization process, various types of Tg multimers, which were generated from deoxy­cholate-treated/reduced Tg, partially unfolded Tg or partially unfolded/reduced Tg, were subjected to various GSH (reduced glutathione) reducing systems using protein disulfide isomerase (PDI), glutathione reductase (GR), glutaredoxin or thioredoxin reductase. The Tg multimers generated from deoxycholate-treated/reduced Tg were depolymerized readily by the PDI/GSH system, which is consistent with the reductase activity of PDI. The PDI/GSH-induced depolymerization of the Tg multimers, which were generated from either partially unfolded Tg or partially unfolded/reduced Tg, required the simultaneous inclusion of glutathione reductase, which is capable of reducing glutathionylated mixed disulfide (PSSG). This suggests that PSSG was generated during the Tg multimerization stage or its depolymerization stage. In particular, the thioredoxin/thioredoxin reductase system or glutaredoxin system was also effective in depolymerizing the Tg multimers generated from the unfolded Tg. Overall, under the net GSH condition, the depolymerization of Tg multimers might be mediated by PDI, which is assisted by other reductive enzymes, and the mechanism for depolymerizing the Tg multimers differs according to the type of Tg multimer containing different degrees and types of disulfide linkages.

Direct Reduction of DTNB by E. coli Thioredoxin Reductase

  • Lim, Hye-Won;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.17-20
    • /
    • 1995
  • Thioredoxin reductase is a flavoprotein oxidoreductase catalyzing the reduction of a cystine disulfide in thioredoxin. Thioredoxin, in turn, can reduce disulfide bonds in other proteins and serves as a reducing agent in enzymatic reactions such as those of ribonucleotide reductase and methionine sulfoxide reductase. In this work thioredoxin reductase was found to directly reduce DTNB in the absence of thioredoxin. This new reactivity of E. coli thioredoxin reductase was produced by relatively high concentrations of univalent cations such as $Na^+$, $K^+$, $Li^+$, and ${NH_4}^+$, and it appeared with the oxidation of NADPH. These results indicate that E. coli thioredoxin reductase may be slightly modified by univalent cations, and the modified enzyme directly reacts with DTNB. This DTNB-reducing activity offers a new assay method for E. coli thioredoxin reductase.

  • PDF

Activity of Human Dihydrolipoamide Dehydrogenase Is Largely Reduced by Mutation at Isoleucine-51 to Alanine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.223-227
    • /
    • 2006
  • Dihydrolipoamide dehydrogenase (E3) belongs to the pyridine nucleotide-disulfide oxidoreductase family including glutathione reductase and thioredoxin reductase. It catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. Isoleucine-51 of human E3, located near the active disulfide center Cys residues, is highly conserved in most E3s from several sources. To examine the importance of this highly conserved Ile-51 in human E3 function, it was substituted with Ala using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 100-fold, indicating that the conservation of the Ile-51 residue in human E3 was very important to the efficient catalytic function of the enzyme. Its altered spectroscopic properties implied that conformational changes could occur in the mutant.

Redox Potential of a Soybean Ferric Leghemoglobin Reductase

  • Kim, Hyun-Mi
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.444-452
    • /
    • 1998
  • The visible spectra of soybean ferric leghemoglobin reductase exhibited a charge transfer band at 530 nm under aerobic condition. Spectra of the oxidized enzyme show a flavin peak at 454 nm and the enzyme has three redox states associated with the active site of the enzyme. The enzyme has an active disulfide bridge and two-electron transfer may dominate in the ferric state of leghemoglobin reduction. The midpoint potentials of the enzyme were determined by spectrotitration to be -0.294 V for disulfide/dithiol and -0.318 V for FAD/$FADH_2$. Since the midpoint potentials for $NAD^+$/NADH and the ferrous/ferric states of leghemoglobin are -0.32 V and +0.22 V, respectively, it is proposed that two electrons are transferred sequentially from NADH to FAD, to the disulfide group, and then to the ferric state of leghemoglobin in the enzyme reaction.

  • PDF

Protein Engineering of an Artificial Intersubunit Disulfide Bond Linkage in Human Dihydrolipoamide Dehydrogenase

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.76-81
    • /
    • 1999
  • Dihydrolipoamide dehydrogenase (E3) belongs to the protein family of pyridine nucleotide-disulfide oxidoreductases, including glutathione reductase (GR). The two subunits of human GR are covalently linked by an intersubunit disulfide bond between the pair of the Cys-90 residues. The corresponding residue (Ser-79) in human E3 was substituted to Cys using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. About 40% of the mutants formed a spontaneous intersubunit disulfide bond linkage. This result implies that Ser-79 and possibly surrounding residues constitute one of the several intersubunit contact regions in human E3. It provides another good piece of evidence for the predicted high degree of the structural homology between human E3 and GR. Spectroscopic studies indicate conformational changes in the mutant.

  • PDF

An L-Type Thioltransferase from Arabidopsis thaliana Leaves

  • Kim, Tae-Soo;Cho, Young-Wook;Kim, Joon-Chul;Jin, Chang-Duck;Han, Tae-Jin;Park, Soo-Sun;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.605-609
    • /
    • 1999
  • Thioltransferase, also called glutaredoxin, is a general GSH-disulfide reductase of importance for redox regulation. Previously, the protein thioltransferase, now called S-type thioltransferase, was purified and characterized from Arabidopsis thaliana seed. In the present study, a second thioltransferase, called L-type thioltransferase, was purified to homogeneity from Arabidopsis thaliana leaves. The purification procedures included DEAE-cellulose ion-exchange chromatography, Sephadex G-50 gel filtration, and glutathione-agarose affinity chromatography. The purified enzyme was confirmed to show a unique band on SDS-PAGE and its molecular weight was estimated to be 26.6 kDa, which appeared to be atypical compared with those of most other thioltransferase. It could utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates, and also contained dehydroascorbate reductase activity. Its optimum pH was 8.5 and its activity was greatly activated by L-cysteine. When it was kept for 30 min, it appeared to be very stable up to $70^{\circ}C$. It was activated by $MgCl_2$ and, on the contrary, inhibited by $ZnCl_2$, $MnCl_2$, and $AlCl_3$.

  • PDF

Thioltransferase (Glutaredoxin) from Chinese Cabbage: Purification and Properties

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.377-383
    • /
    • 1998
  • Thioltransferase, also known as glutaredoxin, was purified from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis) by a combination of ion-exchange chromatography and gel filtration. Its purity was confirmed by SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be about 12,000 which is comparable with those of most known thioltransferases. The enzyme utilizes 2-hydroxyethyl disulfide, S-sulfocysteine, ${\alpha}-chymotrypsin$, insulin, and trypsin as substrates in the presence of reduced glutathione. The enzyme has Km values of 0.03-0.97 mM for these substrates. It appeared to contain dehydroascorbate reductase activity. The pH optimum of the enzyme was 8.5, when 2-hydroxyethyl disulfide was used as a substrate. It was greatly activated by reduced glutathione. Its activity was not significantly lost when stored at high temperature, indicating its thermostable character. It may play an important role in thiol-disulfide exchange in plant cells.

  • PDF

Expression, Purification and Characterization of Yeast Thioredoxin System. (Yeast Thioredoxin System의 발현, 정제 및 특성조사)

  • 정진숙;김명희;김강화
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.483-489
    • /
    • 1998
  • We carried out the expression and characterization of yeast thioredoxin system including thioredexin 1 (Trx1), Trx2, thioredoxin reductase (TR), and a novel thioredoxin (Trx3), which was reported in the data base of Saccharomyces genome. The Trx1, 2 and TR were expressed as soluble proteins in E. coli and the sizes of purified proteins were equal to the reported their molecular weights. The expressed Trx3 was found in both soluble fraction and precipitate. The size of Trx3 purified from soluble fraction of E. coli crude extracts was estimated as 14 kDa on SDS-PAGE instead of 18 kDa for Trx3 in precipitate. N-terminal amino acid sequence of the small size of purified Trx3 from soluble fraction was analyzed as FQSSYTS which is correspond to the sequence from 20 to 26 for Trx3. Trx3 together with thioredoxin reductase and NADPH was able to reduce the disulfide bridge of insulin and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Trx3 stimulated the antioxidant effect of thioredoxin peroxidase 1 (TPx1) which inhibited inactivation of glutamine synthetase (GS) in dithiothreitol (DTT) containing metal catalyzed oxidation system. The stimulation effect of Trx3 was 10% of the effect of either Trx1 or Trx2. In addition, Trx3 could reduce the disulfide of TPx to thiol, so that the TPx had thioredoxin dependant peroxidase activity. In western blotting analysis, antibodies against purified Trx3 did not cross-react with crude extracts of yeast, purified Trx1, and Trx2 proteins. But, in PCR reaction using the cDNA library of yeast as a template, gene encoding of trx3 was amplified.

  • PDF

Synergistic Effect of Reductase and Keratinase for Facile Synthesis of Protein-Coated Gold Nanoparticles

  • Gupta, Sonali;Singh, Surinder P.;Singh, Rajni
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.612-619
    • /
    • 2015
  • We have synthesized gold nanoparticles (GNPs) using chicken feathers (poultry waste) and Bacillus subtilis RSE163. Disulfide reductase and keratinase produced by Bacillus subtilis during the degradation of chicken feather has been used to reduce Au3+ from HAuCl4 precursor to produce gold nanoparticles. The synthesized biogenic GNPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), and zeta potential measurements. Fourier transform infrared (FTIR) spectroscopy indicated the presence of protein capping on synthesized GNPs, imparting multifunctionality to the GNP surface. Furthermore, the nontoxic nature of biogenic GNPs was insured by interaction with Escherichia coli (ATCC11103), where TEM images and enhancement of growth rate of E. coli in log phase signified their nontoxic nature. The results indicate that the synthesis of biocompatible GNPs using poultry waste may find potential applications in drug delivery and sensing.