• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.03 seconds

A Study on an Anti-Rolling System Design of a Ship with the Flaps

  • Kim, Young-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1312-1318
    • /
    • 2004
  • Roll stabilization systems for ships are employed to increase comfort for passengers, maintain full working capabilities for members of the crew and prevent cargo damage. In this paper, we have investigated the usefulness of active stabilizing system to reduce ship rolling under disturbances, using varied reaction of the flaps. In the proposed anti-rolling system for a ship, the flaps as the actuator are installed on the stern to reject rolling motion induced by disturbances such as wave. The action induced by flaps depends on power of disturbances and can take the ship balance. Especially, in this study we define the system parameters under the given system structure and design the controller to evaluate the usefulness of the proposed system.

A Single DOF Magnetic Levitation System using Time Delay Control and Reduced-Order Observer

  • Park, Jung-Soo;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1643-1651
    • /
    • 2002
  • Magnetic levitation systems are required to have a large operating range in many applications. As one method to solve this problem, Time Delay Control (TDC) is applied to a single-axis magnetic levitation system in this paper A reduced-order observer is utilized to estimate states excluding measurable states in the control law. The system consists of a square air-core solenoid and a circular permanent magnet attached on a plastic ball. Theoretical magnetic forces of the system are obtained on the basis of the location of the magnet around the solenoid. The magnetic levitation force is obtained by the experiment, and then compared with the theoretical one. As the results of the control experiments, the nonlinear controller (TDC : 1-2 ㎜) has a larger operating range than the linear controller (PD control : 1-1.4 ㎜), and is superior to linear. control in the robustness to the modeling uncertainty and the performance of the disturbance rejection.

Effects of Attached Masses on the Instability and Vibration Suppression of a Flexible Pipe Conveying Fluid (유체유동에 의한 유연한 파이프의 불안정과 진동억제에 미치는 부가질량의 영향)

  • 류봉조;정승호;이종원
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.280-290
    • /
    • 2000
  • The paper deals with vibration suppression and dynamic stability of a vertical cantilevered pipe conveying an internal flowing fluid and having an attached mass. Real pipe systems may have some valves or mechanical attached parts, which can be regarded as attached lumped masses. The effect of attached mass on the dynamic stability of a cantilevered pipe conveying fluid is investigated for different locations and magnitudes of the attached mass. The flow rate was controlled through motor pump output and measured by a flow meter. Experimental resutls in the vicinity of flutter fluid velocity were compared with theoretical predictions. It has been found that the experimental results are in substantial agreement with the theoretical predictions. Finally, in order to suppress the vibration of the pipe subjected to a disturbance, and control technique using an internal flowing fluid is introduced.

  • PDF

The Performance Evaluation of Precision Position Control Servo System (정밀 위치제어 서보시스템의 성능 평가)

  • 이원희;김동수;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.424-427
    • /
    • 2002
  • Pneumatic control systems have the potential to provide high output power to weight and size ratios at a relatively low cost. However, they are mainly employed in open-loop control applications where positioning repeatability is not of great importance. This paper presents precision positioning control of pneumatic servo cylinder with on-off valve, Pneumatic low-friction cylinder with servo valve and DC servo motor under parameter variations. Basically positioning control uses PID controller, where needs a linearized model. A neural network is added to a PID controller to compensator nonlinearity of the system and an influence of friction force is consider as disturbance. The performances of the proposed algorithms were compared by experiments with them of PID controller. From those experiments is was shown that the proposed algorithms are more efficient about settling time, steady 7tate error and overshoot than PID control algorithm.

  • PDF

Application of Self-Organizing Fuzzy Logic Controller to Nuclear Steam Generator Level Control

  • Park, Gee-Yong;Park, Jae-Chang;Kim, Chang-Hwoi;Kim, Jung-So;Jung, Chul-Hwan;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.85-90
    • /
    • 1996
  • In this paper, the self-organizing fuzzy logic controller is developed for water level control of steam generator. In comparison with conventional fuzzy logic controllers, this controller performs control task with no control rules at initial and creates control rules as control behavior goes on, and also modifies its control structure when uncertain disturbance is suspected. Selected parameters in the fuzzy logic controller are updated on-line by the gradient descent loaming algorithm based on the performance cost function. This control algorithm is applied to water level control of steam generator model developed by Lee, et al. The computer simulation results confirm good performance of this control algorithm in all power ranges. This control algorithm can be expected to be used for automatic control of feedwater control system in the nuclear power plant with digital instrumentation and control systems.

  • PDF

Control of Disturbance Added Servo System Using Fuzzy Controller (Fuzzy 제어기를 이용한 외란부가 Servo System 제어)

  • Kim, Tae-Woo;Lee, Oh-Gul;Chung, Hyeng-Hwan;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.699-702
    • /
    • 1991
  • A servo system requires faster and more accurate dynamic responses. Generally a PD control is mainly used to obtain the precision, and in the other hand a fuzzy control to improve the transient response and to cope with the nonlinearity of systems. Recently hybrid control, which is attempted to combine the advantages of PD control and a Fuzzy control was proposed, but this technique requires complicate design procedures. Therefore in this paper, a Fuzzy controller with a series of membership functions, and various sampling periods and rules, was designed on the basis of Lyapunov stability theory and auto tuning methods of input scale factors. And also it was showed to have the excellent adaptive performances against internal-external disturbances and the usefulness of this controller from the results of simulations.

  • PDF

The development of prototype expert system for fault detection and action priority (고장원 탐색 및 조치의 우선 순위 결정을 위한 전문가 시스템의 구축)

  • 강경식;나승훈;김병석;김태호
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.95-99
    • /
    • 1992
  • The attraction of using expert system in operator support systems for modern plant is that it offers a way of dealing with the problem of information overload that can occur during a severe disturbance at a modern industrial plant. During such a disturance the volume of information presented to operators may be such that they are unable to decide quickly what is important and what is not. Therefore, arriving at a correct diagnosis of the initialling fault may be delayed. An expert system operator sup-port system is a means of focusing attention on what really matters and cutting out the rest. This paper presents the development of prototype expert system which detect the fault part, machine, system and decide action priority. This prototype expert system has 6 sub- system which is Interface Manager, Decision Maker, Inference Engine, Knowledge base, Simulatio, and D.P System ( Diagnosis and predictor)

  • PDF

Combination SPC & EPC for Process Control System (공정관리시스템을 위한 SPC와 EPC의 연계)

  • Jung, Hae-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.119-137
    • /
    • 2006
  • This paper seeks to Combination for Efficient Application of SPC/EPC minimize variability by transferring the output variable to a related process controllable variable, while SPC seeks to reduce variability by detecting and eliminating assignable causes of variation. In the case of product control, a very reasonable objective is to try to minimize the variance of the output deviations from the target or set point. We consider an alternative EPC model with autoregressed disturbance. We compare three control systems; EPC, Cp, SPC combined system with EWMA, CUSUM and Shewhart. This paper shows through simulation that the performance of the integrated model of EPC and SPC, Cp is more preferable than that of EPC.

Robust Control Design Using the ε-sliding Surface for Ball and Beam System (볼-빔 시스템에서의 ε-슬라이딩 평면을 이용한 강인한 제어기 설계)

  • Kim, Jin-Soo;Choi, Ho-Lim
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1444-1448
    • /
    • 2010
  • The ball and beam system is one of the most popular models for studying control systems because of its nonlinearity and several control techniques have been proposed. Sliding mode control is a popular robust control method which rejects the external disturbance. In this paper, we propose a robust controller using the ${\epsilon}$-sliding surface. On the ${\epsilon}$-sliding surface, the system robustness and convergence can be manipulated via a use of ${\epsilon}$. We show the stability analysis and convergence analysis on the ${\epsilon}$-sliding surface. In addition, the experimental results show the validity of the proposed controller.

Design of Magnetic Levitating Flywheel Energy Storage System (자기부상형 플라이휠 에너지 저장 장치의 자기베어링 시스템 설계)

  • Yoo, S.;Mo, S.;Choi, S.;Lee, J.;Han, Y.;Noh, M.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.963-967
    • /
    • 2007
  • Flywheel energy storage systems (FESS) have advantages over other types of energy storage methods due to their infinite charge/discharge cycles and environmental friendliness. The system has two radial bearings and one hybrid-thrust bearing. Thrust hybrid-type bearing use permanent magnet to relieve gravity load. The radial bearings were designed to provide sufficient force slew rate considering the unbalance disturbance at the operating speeds. In this paper, we will derive dynamic model of hybrid-type bearing using permanent magnet for thrust bearing and present simulation and stability of the model.

  • PDF