• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.027 seconds

Survey of Nonlinear Control Methods to Permanent Magnet Stepping Motors (스테퍼 모터를 위한 비선형 제어기법의 개관)

  • Kim, Wonhee;Shin, Donghoon;Lee, Youngwoo;Chung, Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.323-332
    • /
    • 2014
  • Stepper motor is widely used in positioning applications due to its durability and high torque to inertia ratio as well as low cost and ability to be easily controlled with open-loop. Due to increased resolution of position control and improved stability of motion control, microstepping has drawn attention in industry since it was introduced in 1970s. With the increase in computational power and decrease in cost of embedded processors in recent years, drives and control systems for stepper motors have become more sophisticate than ever. Thus, closed-loop control methods have been developed to improve the performance of the stepper motors. In this paper, we review not only basic principles of conventional control methods used for stepper motors but also that of microstepping control. In addition, we surveyed recent development in nonlinear control methods applied to stepper motors. The nonlinear control methods are presented in the view of Lyapunov stability. Nonlinear torque disturbance observer, sliding mode control, and nonlinear phase compensation are also presented.

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

Improvement of Dynamic Characteristics of OIS System using Improved Band Notch and Analysis of Images (노치 대역을 개선한 이미지 흔들림 보정 장치의 동특성 향상과 이미지 분석)

  • Son, Dong-Hun;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.70-74
    • /
    • 2011
  • The mobile camera module is a device to be inserted in the digital device for camera feature. The mobile camera module is being shaken by vibrations such as handshake during the exposure time. The clarity is compromised by these vibrations, thus the vibration is considered as an external disturbance. Moreover the use of mobile camera module has been being expanded for automotive vibration should be considered. These external disturbances can cause image blurring, thus optical image stabilization should be applied for image compensation. The compensator is fulfilled mechanically by movable lens group or image sensor that adjusts the optical path to the camera movement. Open loop control is useful for well-defined systems like compliant mechanism. Notch filter and lead compensator are designed and applied to improve the stability and bandwidth. The final level of image compensating is confirmed by image processing with MATLAB and CODE V to verify the better performance.

Design of Robust Output Feedback Variable Structure Control System (강인한 출력궤환 가변구조제어계의 설계)

  • 이기상;임재형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.458-467
    • /
    • 1994
  • It has been well known that the assumption of full state availability is one of the most important restrictions to the practical realization of VSCS. And several attempts to alleviate the assumption had been made. however, it is not easy to find a positive scheme among them. Recently, an output feedback variable structure control system(OFVSCS) was proposed and the effectiveness of the scheme was validated for the disturbance free systems. The purpose of this study is to propose a robust OFVSCS that have the robust properties against process parameter variations and external disturbances by extending the basic OFVSCS and to evaluate its control performances. The ROFVSES is composed of dynamic switching function and output feedback switching control inputs that are constructed by the use of the unknown vector modeling technique. With the proposed schems, existence of sliding mode is guaranteed and any nonzero bias can be suppressed in the face of disturbances and process parameter variations as far as well-known matching condition is satisfied. Due to the fact that the ROFVSCS is driven by small number of measured informations, the practical application of VSCS for the systems with unmeasurable states and for high order systems, the conventional schemes cannot be applied, is possible with the proposed scheme. It is noticeable that the implementation cast of VSCS can be considerably reduced without sacrifice of control performances by adopting ROFVSCS since there is no need to measure the states with high measurement cost.

A Study on the Underwater Navigation System with Adaptive Receding Horizon Kalman Filter (적응 이동 구간 칼만 필터를 이용한 무인 잠수정의 항법 시스템에 관한 연구)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.269-279
    • /
    • 2008
  • In this paper, an underwater navigation system with adaptive receding horizon Kalman filter (ARHKF) is studied. It is well known that incorrect statistical information and temporal disturbance invoke errors of any navigation systems with Kalman filter, which makes the autonomous navigation difficult in real underwater environment. In this context, two kinds of problems are herein considered. The first one is the development of an algorithm, which estimates the noise covariance of a linear discrete time-varying stochastic system. The second one is the implementation of ARHKF to underwater navigation systems. The performance of the derived estimation algorithm of noise covariance and the ARHKF are verified by simulation and experiment in the towing tank of Seoul National University.

The Implementation of Probabilistic Security Analysis in Composite Power System Reliability (복합전력계통 신뢰도평가의 확률론적 안전도 도입)

  • Cha, Jun-Min;Kwon, Sae-Hyuk;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

A Method of Robust Stabilization of the Plants Using DNP (DNP을 이용한 플랜트의 강인 안정화 기법)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1574-1580
    • /
    • 2008
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the Plants of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

Development of Low Loss Magnetic Levitation System (저손실 자기부상 시스템 개발)

  • Kim Jong-Moon;Kang Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Study on the Propagation Speed of the wide-area power system frequency for the application of FNET (광역 전력계통 주파수 감시망 적용을 위한 광역계통주파수의 전파속도에 관한 연구)

  • Kook, Kyung-Soo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1824-1831
    • /
    • 2009
  • This paper analyzes the propagation speed of the wide-area power system frequency. When a generator supplying the electric power to the grid is accidently tripped due to a disturbance on the systems, power system frequency suddenly drops during the transient period and this propagates from the location of the tripped generator to the other part of the systems like a wave. Since the propagation speed of the power system frequency depends on the own characteristics of power systems, its understanding from the perspective of the wide-area can help us in understanding power systems more correctly. In addition, the propagation speed of the power system frequency is used as a key parameter in the application study of IT based on the internet-based GPS synchronized frequency monitoring network (FENT) which has been recently implemented and operated in U.S. power systems. This paper simulates the generation trip on various locations in U.S. power systems deploying its latest dynamic model and calculates the propagation speed of the power system frequency for the application of FNET.