• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.022 seconds

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

Fuzzy sliding mode controller design for improving the learning rate (퍼지 슬라이딩 모드의 속도 향상을 위한 제어기 설계)

  • Hwang, Eun-Ju;Cho, Young-Wan;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.747-752
    • /
    • 2006
  • In this paper, the adaptive fuzzy sliding mode controller with two systems is designed. The existing sliding mode controller used to $approximation{\^{u}}(t)$ with discrete sgn function and sat function for keeping the state trajectories on the sliding surface[1]. The proposed controller decrease the disturbance for uncertain control gain and This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems ate used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties ate demonstrated. Futhermore, fuzzy tuning improve tracking abilities by changing some sliding conditions. In the traditional sliding mode control, ${\eta}$ is a positive constant. The increase of ${\eta}$ has led to a significant decrease in the rise time. However, this has resulted in higher overshoot. Therefore the proposed ${\eta}$ tuning AFSMC improve the performances, so that the controller can track the trajectories faster and more exactly than ordinary controller. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

Sensorless Speed Control System Using a Neural Network

  • Huh Sung-Hoe;Lee Kyo-Beum;Kim Dong-Won;Choy Ick;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.612-619
    • /
    • 2005
  • A robust adaptive speed sensorless induction motor direct torque control (DTC) using a neural network (NN) is presented in this paper. The inherent lumped uncertainties of the induction motor DTC system such as parametric uncertainty, external load disturbance and unmodeled dynamics are approximated by the NN. An additional robust control term is introduced to compensate for the reconstruction error. A control law and adaptive laws for the weights in the NN, as well as the bounding constant of the lumped uncertainties are established so that the whole closed-loop system is stable in the sense of Lyapunov. The effect of the speed estimation error is analyzed, and the stability proof of the control system is also proved. Experimental results as well as computer simulations are presented to show the validity and efficiency of the proposed system.

A Study on Control for the Two-Rotor System Using Inertial Sensors (관성 센서를 이용한 투로터 시스템 제어에 관한 연구)

  • Jang, Jae Hoon;Jeung, Eun Tae;Kwon, Sung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.190-194
    • /
    • 2013
  • This paper presents experimental results of the attitude control for a two-rotor system with 3-DOF(degree-of-freedom). Two DC motors are equipped at the two ends of a rectangular beam to generate lift force and the relation between motor voltage and lift force is found experimentally. And inertial sensors are mounted at the center of the beam to measure the roll angle and a complementary filter is designed to get the angle during DC motors driving. A controller with nonlinear compensation, integrator and state feedback to achieve asymptotic tracking for a step input and reject input disturbance is designed and experimented.

Design and implementation of fast output sampling feedback control for shape memory alloy actuated structures

  • Dhanalakshmi, K.;Umapathy, M.;Ezhilarasi, D.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.367-384
    • /
    • 2011
  • This paper presents the design and experimental evaluation of fast output sampling feedback controller to minimize structural vibration of a cantilever beam using Shape Memory Alloy (SMA) wires as control actuators and piezoceramics as sensor and disturbance actuator. Linear dynamic models of the smart cantilever beam are obtained using online recursive least square parameter estimation. A digital control system that consists of $Simulink^{TM}$ modeling software and dSPACE DS1104 controller board is used for identification and control. The effectiveness of the controller is shown through simulation and experimentation by exciting the structure at resonance.

Study on the Influence of Grid Voltage Quality on SVG and the Suppression

  • Yi, Guiping;Hu, Renjie
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Industrial Static Var Generator (SVG) is typically applied at or near the load center to mitigate voltage fluctuation, flicker, phase unbalance, non-sine distortion or other load-related disturbance. Special attention is paid to the influence of grid voltage quality on SVG current, the non-sine distortion and unbalance of grid voltage causes not only the AC current distortion and unbalance but also the DC voltage fluctuation. In order to let the inverter voltage contain the fundamental negative sequence and harmonic component corresponding to the grid voltage, a new dual-loop control scheme is proposed to suppress the influence in this paper. The harmonic and negative sequence voltage decomposition algorithm and DC voltage control are also introduced. All these analyses can guide the practical applications. The simulation results verify the feasibility and effectiveness of the present control strategy and analyses.

Characteristics of a Magnetically Levitated Vehicle using a Small Number of Dry Cell Batteries

  • Kakinoki, Toshio;Yamaguchi, Hitoshi;Mukai, Eiichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.200-206
    • /
    • 2014
  • This paper describes magnetically levitated vehicle with hybrid magnets, which have been studied by the authors in place of streetcars or conveyance system. An experimental vehicle of 20kg was magnetically levitated by using a small number of dry-cell batteries, which consisted of 10 Ni-MH cells of 1900mAh in series. The magnets were activated sequentially, because the internal resistance of the batteries suppressed the maximum current. The vehicle was kept levitating for about 2 hours and was stable against disturbance due to instantaneous external force. In this paper, dynamic characteristics of the magnetically levitated vehicle using a small number of dry cell batteries are presented.

Adaptive High Precision Control of Lime-of Sight Stabilization System (시선 안정화 시스템의 고 정밀 적응제어)

  • Jeon, Byeong-Gyun;Jeon, Gi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1155-1161
    • /
    • 2001
  • We propose an adaptive nonlinear control algorithm for high precision tracking and stabilization of LOS(Line-of-Sight). The friction parameters of the LOS gimbal are estimated by off-line evolutionary strategy and the friction is compensated by estimated friction compensator. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Lyapunov stability theory, and its convergence is guaranteed under the limited modeling error or torque disturbance. The performance of the pro-posed algorithm is verified by computer simulation on the LOS gimbal model of a moving vehicle.

  • PDF

Adaptive Backstepping Controller Design for a Permanent Magnet Synchronous Motor using Speed Observer (속도관측기를 활용한 영구자석동기전동기의 적응 백스테핑 제어기 설계)

  • 현근호;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.347-353
    • /
    • 2003
  • A nonlinear speed controller for a surface mounted permanent magnet synchronous motor (PMSM) based on a newly developed adaptive backstepping approach is presented To compensate parameter uncertainties and load torque disturbance, a nonlinear adaptive backstepping control law and adaptive law are derived systematically through virtual control input and suitable Lyapunov function. Also, speed observer without using costly speed sensor is presented. Simulation results show that the proposed controller can observe the speed and track the reference speed signal generated by a reference model.

Design of a Discrete-Time $H_{\infty}$ Controller with Preview Action (예견 기능을 가진 이산시간 $H_{\infty}$ 제어기의 설계)

  • Choi, Jin-Tae;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.115-123
    • /
    • 1997
  • 이산기간 H/sub .inf./ 제어에 의한 최적 예견제어기를 제안한다. 기존의 H/sub .inf./ 제어기는 미지의 외란만 고려한 것이고, LQ 에 의한 예견제어기는 예견 가능한 외란과 미지의 외란이 동시에 가해지는 동적 시스템의 전달함수 행렬의 infinity 놈의 최소화하는 피드백제어기가 동시에 설계된다. 제어기의 설계는 full-information H/sub .inf./ 제어 이론을 따르나, 그 유도 과정은 LQ 에 기초한 예견제어기와 유사하게 이루어진다. 설계된 H/sub .inf./ 예견 게인 행렬은 LQ 예견 게인 행렬과 유사한 구조를 갖는다. 전달함수 행렬의 infinity 놈이 .inf.로 갈수록 H/sub .inf./ 예견 게인 행렬은 LQ에 의한 것에 접근한다. LQ 예견 게인 행렬은 H/sub .inf./ 예견 게인 행렬의 부분 집합임이 입증한다.

  • PDF