• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.034 seconds

Study on Rubber Damping Characteristics of Vibration Reduction Mounts for UAVs (무인기용 진동 저감 마운트의 고무 감쇠 특성에 대한 연구)

  • Chan-Whi Kang;Hun-Suh Park;Dong-Gi Kwag
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.927-933
    • /
    • 2023
  • In modern times, with advances in semiconductor technology such as electronic devices, the need to improve the quality of onboard equipment with advanced electronic parts in automobiles, drones, airplanes, projectiles, and various fields, and reduce the impact of various disturbances on onboard equipment is becoming more important. Vibration control through hardware must be determined to prevent damage and improve quality to equipment operating in various environments such as automobiles, drones, airplanes, and projectiles. This study focuses on the study of vibration damping systems to protect mounted equipment from various disturbances and improve stability. Dynamic characteristics analysis, including compressive stiffness, damping rate, and frequency response, and vibration characteristics in the frequency domain of rubber dampers were identified through FEM analysis to identify the characteristics of rubber dampers. Through these findings, we would like to present the criteria for selecting a suitable rubber damper under various disturbance conditions.

Geology and Tectonics of the Mid-Central Region of South Korea (남한(南韓) 중부지역(中部地域)의 토질(土質)과 지구조(地構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.73-90
    • /
    • 1969
  • The area studied is a southwestern part of Okcheon geosynclinal zone which streches diagonally across the Korean peninsula in the mid-central parts of South Korea, and is bounded by Charyeong mountain chains in the north and by Sobaek mountain chains in the south. The general trend of the zone is of NE-SW direction known as Sinian direction. Okcheon system of pre-Cambrian age occupies southwestern portion of Okcheon geosynclinal zone, and Choseon and Pyeongan systems of Cambrian to Triassic age in northeastern portion of the zone. It was defined by the writer that the former was called "Okcheon Paleogeosynclinal zone" and the latter "Okcheon Neogeosynclinal zone," although T. Kobayashi named them "Metamorphosed Okcheon zone" and "Non-metamorphosed Okcheon zone" respectively and thought that sedimentary formations in both zones were same in origin and of Paleozonic age, and C.M. Son also described that Okchon system was of post-Choseon (Ordovician) and pre-Kyeongsang (Cretaceous) in age. According to the present study two zones are separated by great fault so that the geology in both zones is not only entirely different in origin and age, but also their geolosical structures are discontinuous. Stratigraphy and structure of Okcheon system are clearly established and defined by the writer and its age is definitely pre-Cambrian. It is clarified by present study that the meta-sediments in and at vicinity of Charyeong mountain chains are correlated to Weonnam series of pre-Cambrian age which occupies and continues from northeast to southwest in and at south of Sobaek mountain chains, and both metasediments constitute basement of Okcheon system. Pyeongan, Daedong and Kyeongsang systems were deposited in few narrow intermontain basins in Okcheon paleogeosynclinal zone after it was emerged at the end of Carboniferous period. Granites of Jurassic and Cretaceous ages and volcanics of Cretaceous age are cropped out in the zone. Jurassic granite is aligned generally with the trend of Okcheon geosynclinal zone, whereas Cretaceous granite lacks of trend in distribution. Many isoclinal folds and thrust faults caused by Taebo orogeny at the end of Jurassic period are also parallel with Sinian directieon and dip steeply to northwest. Charyeong, Noryeong, Sobaek, and Deogyu mountain chains are located in areas of anticlinorium, and Kyongsang system in narrow synclinal zones. Folds in Okcheon neogeosynclinal zone are generally of N 70-80W direction but deviate to Sinian direction at the western parts of the zone. This phenomena is interpreted by the fact that the folds were originated by Songrim disturbance at the end of Triassic period and later partly modified by Taebo orogeny. Thrust faults of Taebo orogeny coentinue from Okcheon paleogeosynclinal zone into neogeosynclinal zone, forming imbricated structure as previously described. Strike-slip faults perpendicular to Sinian direction and shear faults diagonally across it by 55 degrees also prevail in neogeosynclinal zone. It is concluded from viewpoints on geology and geological structure that l)Okchon geosyncline had changed its location and affected by numerous disturbances through geologic time, and 2)mountain chains in the area such as Charyeong, Noryeong, Sobaek, and Deogyu were originated as folded mountains. Differing from others, however, Sobaek range was probably formed at the time of Songrim disturbance and modified later by Taebo orogeny. It is cut by Danyang-Jeomchon fault at the vicinity of Joryeong near Munkyeong village and does not continue to southwest beyond the fault, whereas southwestern portion of erstwhile Sobaek range continues to Taebaek rangd northeastward from Deogyusan passing through Sangju, Yecheon, and Andong. From these evidences, the writer has newly defined the erstwhile Sobaek range in such a way that Sobaek range is restricted only to northeastern portion and Deogyu range is named for the southwestern portion of previous Bobaek range.

  • PDF

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.

Biodegradation of Recalcitrant Chlorinated Aromatic Compounds via Microbial Dechlorination (미생물의 탈염소화 작용에 의한 난분해성 염화방향족 오염물질의 분해)

  • 채종찬;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • Chlorinated aromatic compounds are one of the largest groups of environmental pollutants as a result of world-wide distribution by using them as herbicides, insecticides, fungicides, solvents, hydraulic and heat transfer fluids, plasticizers, and intermediates for chemical synthesis. Because of their toxicity, persistence, and bioaccumulation, the compounds contaminated ubiquitously in the biosphere has attracted public concerns in terms of serious influences to wild lives and a human being, such as carcinogenicity, mutagenicity, and disturbance in endocrine systems. The biological recalcitrance of the compounds is caused by the number, type, and position of the chlorine substituents as well as by their aromatic structures. In general, the carbon-halogen bonds increase the recalcitrance by increasing electronegativity of the substituent, so that the dechlorination of the compounds is focused as an important mechanism for biodegradation of chlorinated aromatics, along with the cleavage of aromatic rings. The removal of the chlorine substituents has been known as a key step for degradation of chlorinated aromatic compounds under aerobic condition. This can occur as an initial step via oxygenolytic, reductive, and hydrolytic mechanisms. The studies on the biochemistry and genetics about microbial dechlorination give us the potential informations for microbial degradation of xenobiotics contaminated in natural microcosms. Such investigations might provide biotechnological approaches to solve the environmental contamination, such as designing effective bioremediation systems using genetically engineered microorganisms.

  • PDF

Fish Fauna and Disturbance in Odaesan National Park, Korea (오대산국립공원의 어류상과 어류교란)

  • Choi Jae-Seok;Choi Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.19 no.2
    • /
    • pp.177-187
    • /
    • 2005
  • Fish fauna of mountain streams in the Odaesan National Park area was investigated from May to October 2004. A total of 2,580 individuals were collected and classified into 26 species belonging to 9 families at the 25 sites. There were 8 Korea endemic species $(30.77\%)$, including Pseudopungtungia tenuicorpa, Silurus microdorsalis, Coreoperca herzi. Exotic species, Oncorhynchus mykiss was collected in this survey. Dominant species were Rhynchocypris kumgangensis $(37.17\%)$, and subdominant species was Rhynchocypris steindachneri$(23.02\%)$. Also Zacco platypus, Zacco temmincki, Oncorhynchus masou masou, Brachymystax lenok tsinlingensis, and Ladislavia tazanowskii were numerous. In spite of the geographical isolation by Taebaek-sanmaek, 8 species were introduced from the Han River systems to eastern water systems in Odaesan National Park.

Implementation of Multiple Nonlinearities Control for Stable Walking of a Humanoid Robot (휴머노이드 로봇의 안정적 보행을 위한 다중 비선형 제어기 구현)

  • Kong, Jung-Shik;Kim, Jin-Geol;Lee, Bo-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This paper is concerned with the control of multiple nonlinearities included in a humanoid robot system. A humanoid robot has some problems such as the structural instability, which leads to consider the control of multiple nonlinearities caused by driver parts as well as gear reducer. Saturation and backlash are typical examples of nonlinearities in the system. The conventional algorithms of backlash control were fuzzy algorithm, disturbance observer and neural network, etc. However, it is not easy to control the system by employing only single algorithm since the system usually includes multiple nonlinearities. In this paper, a switching Pill is considered for a control of saturation and a dual feedback algorithm is proposed for a backlash control. To implement the above algorithms, the system identification is firstly performed for the minimization of the difference between the results of simulation and experiment, and then the switching Pill gains are determined using genetic algorithm with some heuristic approach. The performance of the switching Pill controller for saturation and the dual feedback for backlash control is investigated through the simulation. Finally, it is shown that the implemented control system has good results and can be applied to the real humanoid robot system ISHURO.

The Interrelationship between Riparian Vegetation and Hydraulic Characteristics during the 2020 Summer Extreme Flood in the Seomjin-gang River, South Korea (2020 여름 섬진강 대홍수시 하안식생과 수리 특성의 상호관계)

  • Lee, Cheolho;Lee, Keonhak;Kim, Hwirae;Baek, Donghae;Kim, Won;Kim, Daehyun;Lee, Hyunjae;Woo, Hyoseop;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Because active interactions occur among vegetation, hydrology, and geomorphology in riparian systems, any changes in one of these factors can significantly affect the other two. In this study, we evaluated these interactions at four sites (two in Gajeong and two in Hahan) along the Seomjin-gang River that was substantially devastated by an extreme flood in 2020. We examined the relationship between the riparian vegetation and the hydraulic characteristics of the flood using remote sensing, hydraulic modeling, and field surveys combined. The evaluation results showed that the floods caused a record-breaking rise of up to 43.1 m above sea level at the Yeseong-bridge stage gauge station (zero elevation 27.4 m) located between the Gajeong and Hahan sites, with the shear stress being four times higher in Hahan than in Gajeong. Additionally, the water level during the flood was estimated to be a maximum of 1 m higher depending on the location in the presence of riparian plants. Furthermore, both sites underwent extensive biological damage due to the flood, with 78-80% loss in vegetation, with preferential damage observed in large willow species, compared to Quercus acutissima. The above findings imply that all plant species exhibit different vulnerabilities towards extreme floods and do not induce similar behavior towards events causing a disturbance. In conclusion, we developed strategies for effectively managing riparian trees by minimizing flood hazards that could inevitably cause damage.

A CLINICAL STUDY OF BIODEGRADABLE PLATES AND SCREWS IN ORAL AND MAXILLOFACIAL SURGERY (구강 악안면 영역의 생체 흡수성 고정판 사용에 관한 임상 연구)

  • Kim, Il-Kyu;Park, Seung-Hoon;Jang, Keum-Soo;Yang, Jung-Eun;Jang, Jae-Won;Sasikala, Balaraman
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.6
    • /
    • pp.451-458
    • /
    • 2009
  • Metallic bone plates and screws have been commonly used in oral and maxillofacial surgery for internal fixation. However, there are several disadvantages such as atrophy of cortical bone inherent to excessive rigid fixation systems, growth disturbance in growing individual, allergy reaction, interference with radiographic imaging, palpability, thermal sensitibity and the need for subsequent removal. To overcome these disadvantages and avoid additional surgery of removal of plates and screws, there have been many studies of biodegradable plates and screws. But, It also has complication such as foreign body reactions. We have undertaken a clinical and retrospective study on 140 patients in Dept. of Oral and Maxillofacial Surgery, Inha University Hospital from February 2006 to March 2009. The purpose of this study is to report the clinical cases and review of the literatures with biodegradable plates and screws. And we concluded following results. 1. 6 cases(3.4%) of the 177 operation sites(140 patients) experienced complications. 1 case(0.6%) was a failure of initial fixation, 1 case(0.6%) was a postoperative infection, 4 cases(2.3%) were inflammations or foreign body reaction. 2. Postoperative infections, inflammations and foreign body reactions were completely recovered with incision and drainage, supporative care with antibiotic coverage and removal of biodegradable plates. 3. Biodegradable plates and screws provide acceptable rigidity and stability clinically. But, long-term observation is required for the tissue reactions around the biodegradable plates and screws because of long resorption periods of the biodegradable materials.