• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.026 seconds

A concurrent eigenstructure assignment method by state feedback (상태되먹임에 의한 동시고유구조 지정 기법)

  • Choi, Jae-Weon;Lee, Jang-Gyu;Kim, You-Dan;Gang, Tae-Sam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.4-12
    • /
    • 1995
  • In the sense of eigenstructure (eigenvalues/eignenvectors) assignment, the effectiveness and disturbance suppressibility of a controller depend mainly on the left eigenstructure (eignevalues/left eigenvectors) of a system. On the other hand, the disturbance decouplability is governed by the right eigenstructure (eignevalues/right eigenvectors) of the system. In this paper, in order to obtain a disturbance decouplable as well as effetive and disturbance suppressible controller, a concurrent assignment methodology of the left and right eigenstructure is proposed. The biorthogonality condition between the left and right modal matrix and state selection matrices are used to develop the methodology. The proposed concurrent eigenstructure assignment methodology guarantees that the desired eigenvalues are achieved exactly and the desired left and right eigenvectors are assigned to the best possible (achievable) sets of eigenvectors in the least square sense, respectively. A numerical example is presented to illustrate the validity and usefulness of the proposed methodology.

  • PDF

A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Analysis to design optimal controller for the gun servo system with known firing disturbance (사격 외란을 받는 포구동장치의 최적제어기 구성에 관한 연구)

  • 김광태;최중락;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.639-642
    • /
    • 1988
  • In this paper, the problem of regulation in the presence of a known firing disturbance is considered. We show how one can apply a disturbance-utilizing control(DUC) theory to a actual gun servo model. Applied disturbance-utilizing control theory is established by combining LQ regulator and reduced order observer in the discrete time domain. To see the performance of the applied method, computer simulation results are given.

  • PDF

Eigenstructure Assignment Using Optimization Method for Disturbance Suppression and Fault Isolation (최적화 기법을 이용한 외란 억제 및 고장 분리에 대한 고유구조 지정)

  • 서영봉;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.14-14
    • /
    • 2000
  • In this paper, we present a systematic optimization method that has flexibility of exact assignment of eigenstructure with disturbance suppression and fault isolation capability. The eigenstructure for fault isolation is assigned by the inclusion of a eigenstructure assignment problem in the objective function as well as a disturbance suppression term is also included in the objective function enhance the robustness of the control scheme. The proposed scheme is applied to designing asimple system to confirm the usefulness of the scheme.

  • PDF

Compensation for Position Control of a Robot Manipulator Using a Modified Disturbance Observer (DOB) based on an Accelerometer (가속도 센서기반의 변형된 외란 관측기를 이용한 로봇 매니퓰레이터의 위치 제어의 보상)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.462-467
    • /
    • 2013
  • This paper presents a modified disturbance observer (MDOB) for controlling two arms of a manipulator designed for a home service robot. The MDOB is slightly different from the original DOB in that it uses an accelerometer to measure acceleration of the robot arm. Then it uses the acceleration to estimate the disturbance to cancel out in the control loop. Relying on the acceleration information of the robot arm, a partial model-based control structure is formed. Experimental studies of position control of 2 DOF robot arm are conducted to evaluate the performance of the proposed position control by an MDOB method.

Design of Disturbance Observer Based on Structural Analysis (구조적 분석에 기초한 외란관측기의 설계)

  • 김봉근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 2004
  • Disturbance observer (DOB) has been studied extensively and applied to many motion control fields during the last decades, but relatively few studies have been devoted to the development of analytic, systematic design methods for DOB itself, This paper thus aims to provide an analytic, systematic design method for DOB. To do this, DOB is structurally analyzed and the generalized disturbance compensation framework named robust internal-loop compensator (RIC) is introduced. Through this, the inherent equivalence between DOB and RIC is found, and the mixed sensitivity optimization problem of DOB is solved. Q-filter design is completely separated from the mixed sensitivity optimization problems of DOB although the proposed method has implicit .elation with Q-filter. Also, although the Q-fille. is separately designed with sensitivity function, the proposed DOB framework has the exactly same characteristic as the original DOB.

Design of Disturbance Observer Considering Robustness and Control Performance (2) : It's Application for Optical Disc Drive Servo System (강인성과 제어 성능을 고려한 외란 관측기의 설계 (2) : 광 디스크 드라이브 서보 시스템에의 적용 실험)

  • 김홍록;최영진;서일홍;정완균;박명관;이경호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.270-276
    • /
    • 2003
  • The disturbance observer (DOB) has been widely utilized fer high precision and high speed motion control application. However, it still lacks the analysis for the robustness brought by using DOB. This paper summarizes six guidelines for the design of DOB taking into account the robustness and control performance in case of the second order system. For effectiveness of the proposed guideline, the actual implementation and experimental results of the DOB is compared in the Optical Disk Drive(ODD) servo system. In the DVD player and DVD-ROM drive, the guidelines of DOB are useful, and the disturbance rejection performance is improved under the DOB system.

A Novel Visual Servoing Method Using QR Decomposition and Disturbance Observer (QR분해와 외란관측기를 이용한 시각구동 방법)

  • 이준수;서일홍;유범재;오상록
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.462-470
    • /
    • 2000
  • This paper proposes a visual servoing method based on QR decomposition and disturbance observer. The QR decomposition factors the image feature Jacobian into a unitary matrix and an upper triangular matrix. And it is shown that several performance indices such as measurement sensitivity of visual features, sensitivity of the control to noise and controllability can be improved for any general image feature Jacobian by QR decomposition and disturbance observer. To show the validity of the proposed approach, visual servoing with stereo vision is carried out for a Samsung FARAMAN 6-axis industrial robot manipulator.

  • PDF

Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Application (제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 적용)

  • Kang, Min-Sig;Yoon, Woo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.65-73
    • /
    • 2007
  • In this paper, the gain scheduled state feedback and disturbance feedforward control design proposed in the previous paper has been applied to a simple matching system and a turret stabilization system. In such systems, it is needed to attenuate disturbance response effectively as long as control input satisfies the given constraint on its magnitude. The scheduled control gains are derived in the framework of linear matrix inequality(LMI) optimization by means of the MatLab toolbox. Its effectiveness is verified along with the simulation results compared with the conventional optimum constant gain control and the scheduled state feedback control cases.

AN ADVANCED DISTURBANCE REJECTION CONTROL FOR REPEATABLE RUNOUT IN DISK DRIVE SYSTEMS (컴퓨터 하드디스크의 반복 런아웃에서 비롯된 외란의 효율적 제어)

  • 용부중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • An improved disturbance rejection control scheme is presented for minimizing the position error due to the repeatable runout disturbances in high density disk drive systems The proposed control algorithm is capable of attenuating repeatable disturbances which is one of the major detractors to hard disk drive quality and performance. This is achieved by a sys-tematic combination of an optimal feedback component and a feedforward preview component. The feedback component is designed where the emphasis is placed on robustness. The feedforward component is on the basis of a preview control comprised of a measured disturbance signals which leads to better disturbance rejection capabilites. The designed con-troller is applied as a plug-in module to a high density hard disk drive with a pre-existing conventional servo controller. Simulations have been carried out to demonstrate the effectiveness of this control scheme in the reduction of the periodic disturbances.

  • PDF