• Title/Summary/Keyword: disturbance system

Search Result 2,376, Processing Time 0.031 seconds

Speed Control for an Induction Motor Using a 2 Degree-of-Freedom Controller (2자유도 제어기를 이용한 유도전동기 속도제어)

  • Hwang, Dae-Kyu;Oh, Tae-Seok;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.185-190
    • /
    • 2002
  • This paper describes a design of an induction motor control system using a 2 degree-of-freedom PI controller to compensate the effects of disturbance without degrading tracking performance. On the basis of vector control principle, the control system is simulated by using the ACSL and implemented on a DSP system(TMS320C31). In designing the 2 DOF controller, we can tune the performance of either the tracking or disturbance rejection independently without affecting the other. With the experimental results, the 2 DOF controller has shown a better performance in command tracking and disturbance rejection than a conventional PI controller.

  • PDF

A study on the robot controller design using a reduced-order observer (축소차수 관측기를 이용한 로보트 제어기 설계에 관한 연구)

  • 김도식;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1-6
    • /
    • 1991
  • This paper is concerned with the design of a robust tracking controller using a state observer on a robotic manipulator under the disturbance. The controller is designed to follow a step or ramp reference input without steady state error in the presence of a disturbance and a system parameter variation. In most cases, since all the state vectors are not measured, unmeasurable state vectors must be estimated or reconstructed. A reduced order observer is proposed to estimate unmeasurable state vectors of the non-linear system. Some problems are caused by the Coulomb friction, the disturbance, and the spring effect of a link between the drive motor and the manipulator arm. The state variables, directly measured and estimated by the reduced order observer, are fed back to the controller. When the robot system exhibits the 'limit cycle, the feedback gains initially obtained by optimal control theory are changed. As a result, the limit cycle is eliminated by the new controller gains,

  • PDF

Disturbance countermeasurement of depth control system using adaptive notch filter (적응노치필터를 이용한 심도제어시스템 외란처리)

  • 김윤호;윤형식;임재환;이석필;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.86-89
    • /
    • 1992
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generaly of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally much greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we disigned adaptive notch filtering system using filter bank structure. Energies of each band-passed signal are obtained by MA(Moving Average) method and compared to produce center frequency. By adapting this parameter to notch filter, 1st order seaway disturbance can be removed, which lead to the improvement of automatic depth control system.

  • PDF

Design of Disturbance Observer Using Robust Control Method for SPM-based Data Storage Systems (SPM-based Data Storage 시스템을 위한 강인 제어 시스템 설계 방식을 이용한 외란 관측 제어기 설계)

  • Moon, Jun;Lee, Choong-Woo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.160-167
    • /
    • 2009
  • In this paper, we apply the robust disturbance observer (DOB) to a SPM-based data storage (SDS) system. In the SDS system, coupling dynamics and parameter uncertainties are obstacles to the precision tracking control. Although the DOB is known to be an effective method to reject disturbances, there has been no systematic design approach to how to design DOB parameters. In this paper, the robust DOB is formulated based on the robust stabilization of normalized coprime factor plant description and the $H{\infty}$ loop shaping method. From the simulation and experimental results. the improved robustness and performance are obtained by the proposed robust DOB.

Synchronization Control of Two Hydraulic Cylinders Using Feedback Linearization Compensator and Disturbance Observer (피드백 선형화 보상기와 외란 관측기를 이용한 2개 유압 실린더의 동기 제어)

  • Kam, J.S.;Oh, D.H.;Lee, I.Y.;Kim, J.W.;Lee, H.C.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.14-20
    • /
    • 2013
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to the synchronization control of two hydraulic cylinders. The hydraulic system consists of a proportional directional control valve with overlap characteristic near the neutral position, a conventional hydraulic cylinder and an external load. The control performances of the system were verified through numerical simulations. From the simulations, it was ascertained that excellent control performances were obtained with the suggested control strategy.

Model Reduction Using Stochastic Balance Technique (확률론적 발란스 방법을 이용한 제어용 모델의 축소)

  • Lee, Dong-Hee;Park, Sung-Man;Lee, Jong-Bok;Chae, Kyo-Soon;Yeo, Un-Kyung;Heo, Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.912-917
    • /
    • 2007
  • Recently, dynamic system has been enlarged and is normally exposed to various types of disturbance. Thus designing controller for these dynamic systems under random disturbance is not practically easy. As a result, the exact analysis for the system which is exposed to various irregular disturbance is quite important. In order to perform analysis, conventional BMR(balance model reduction) method is adopted and applied to moment equation in stochastic domain. Reliable reduced order system model has been obtained.

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

A Simulation of "Self-Organizing Fuzzy Controller" for a Dynamic System under Irregular Disturbance (확률론적 가진을 받는 동적계에 대한 자기구성 퍼지제어기의 구현)

  • Yeo, Woon-Joo;Oh, Yong-Sul;Jung, Quen-Yong;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1058-1062
    • /
    • 2003
  • This paper proposes a self-organizing fuzzy controller (SOFC) design technique applied to the vibration control of a dynamic system under irregular disturbance. In this controller, the fuzzy rules generate control signal continuously using the array of input and output pairs without using any special controller model. The generated rules are saved in the fuzzy rule matrix in real-time by self-organizing methods. This fuzzy logic control is demonstrated by simulation and shows the efficiency of the real-time self-organizing fuzzy controller in this system.

  • PDF

Robust Backstepping Design of Nonlinear Systems Using Adaptation Strategy for Uncertaninties (불확실성 적응기법을 이용한 비선형 시스템의 강인 백스테핑 설계)

  • Kim, Dong-Heon;Kim, Eung-Seok;Yang, Hae-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.605-613
    • /
    • 2001
  • In this paper, we design a robust adaptive controller for a nonlinear system with uncertainties to be rejected via disturbance adaptation law. The nonlinear system considered has unknown nonlinear functions being influenced by external disturbance. The upper bound of unknown nonlinear functions at each time is estimated by using a disturbance adaptation law. The estimated nonlinear functions are used to design a stabilizing function a control input. Tuning function is used to estimates unknown system parameter without overparametrization. A set-point regulation error converges to a residual set close to zero asymptotically. The effectiveness of the proposed controller is investigated by computer simulation.

  • PDF

A Study for Controller Design Using 2-Degree of Freedom(DOF) Structure In A Magnetically Suspended System (자기부상시스템의 2-DOF 구조를 이용한 제어기 설계에 관한 연구)

  • Baek, Seung-Koo;Lee, Chang-Young;Chang, Seok-Gahk;Kwon, Sung-Tae
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1430-1435
    • /
    • 2006
  • This study deals with the problem of balance beam system to stabilize about static and sinusoidal disturbance. wherein the design objectives are to keep the gap deviation from static and sinusoidal disturbance. In this paper propose the 2-Degree of Freedom(DOF) structure and a simple first-order controller which is designed by Characteristic ratio assignment (CRA) method. Matlab simulation result verify stabilization of balance beam system despite of disturbance. Hybrid simulation between digital controller and analog plant is presented by Matlab Simulink.

  • PDF