• Title/Summary/Keyword: distribution parameter

Search Result 2,520, Processing Time 0.032 seconds

Face Representation Based on Non-Alpha Weberface and Histogram Equalization for Face Recognition Under Varying Illumination Conditions (조명 변화 환경에서 얼굴 인식을 위한 Non-Alpha Weberface 및 히스토그램 평활화 기반 얼굴 표현)

  • Kim, Ha-Young;Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.295-305
    • /
    • 2017
  • Facial appearance is greatly influenced by illumination conditions, and therefore illumination variation is one of the factors that degrades performance of face recognition systems. In this paper, we propose a robust method for face representation under varying illumination conditions, combining non-alpha Weberface (non-alpha WF) and histogram equalization. We propose a two-step method: (1) for a given face image, non-alpha WF, which is not applied a parameter for adjusting the intensity difference between neighboring pixels in WF, is computed; (2) histogram equalization is performed to non-alpha WF, to make a uniform histogram distribution globally and to enhance the contrast. $(2D)^2PCA$ is applied to extract low-dimensional discriminating features from the preprocessed face image. Experimental results on the extended Yale B face database and the CMU PIE face database show that the proposed method yielded better recognition rates than several illumination processing methods as well as the conventional WF, achieving average recognition rates of 93.31% and 97.25%, respectively.

Mathematical Prediction of the Lunar Surface Temperature Using the Lumped System Analysis Method (집중계 해석법을 이용한 달 표면온도 예측)

  • Kim, Taig Young;Lee, Jang-Joon;Chang, Su-Young;Kim, Jung-Hoon;Hyun, Bum-Seok;Cheon, Hyeong Yul;Hua, Hang-Pal
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • The lunar surface temperature is important as a environmental parameter for the thermal design of the lunar exploration vehicles such as orbital spacecraft, lander, and rovers. In this study, the temperature is numerically predicted through a simplified lumped system model for the energy conservation. The physical values required for the analysis of the energy equation are derived by considering the geometric shape, and the values presented in the previous research results. The areal specific heat, which is the most important thermo-physical property of the lumped system model, was extracted from the temperature measurements by the Diviner loaded on the LRO, and the value was predicted by calibration of the analytical model to the measurements. The predicted temperature distribution obtained through numerical integration has sufficient accuracy to be applied to the thermal design of the lunar exploration vehicles.

Increased Osteoblast Adhesion Densities on High Surface Roughness and on High Density of Pores in NiTi Surfaces

  • Im, Yeon-Min;Gang, Dong-U;Kim, Yeon-Uk;Nam, Tae-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.1-39.1
    • /
    • 2009
  • NiTi alloy is widely used innumerous biomedical applications (orthodontics, cardiovascular, orthopaedics, etc.) for its distinctive thermomechanical and mechanical properties such as shape memory effect, super elasticity, low elastic modulus and high damping capacity. However, NiTi alloy is still a controversial biomaterial because of its high Ni content which can trigger the risk of allergy and adverse reactions when Ni ion releases into the human body. In order to improve the corrosion resistance of the TiNi alloy and suppress the release of Ni ions, many surface modification techniques have been employed in previous literature such as thermal oxidation, laser surface treatment, sol-gel method, anodic oxidation and electrochemical methods. In this paper, the NiTi was electrochemically etched in various electrolytes to modify surface. The microstructure, element distribution, phase composition and roughness of the surface were investigatedby scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry(EDS), X-ray diffractometry (XRD) and atomic force microscopy (AFM). Systematic controlling of nano and submicron surface features was achieved by altered density of hydro fluidic acid in etchant solution. Nanoscale surface topography, such as, pore density, pore width, pore height, surface roughness and surface tension were extensively analyzed as systematical variables.Importantly, bone forming cell, osteoblast adhesion was increased in high density of hydro fluidic treated surface structures, i.e., in greater nanoscale surface roughness and in high surface areas through increasing pore densities.All results delineate the importance of surface topography parameter (pores) inNiTi to increase the biocompatibility of NiTi in identical chemistry which is crucial factor for determining biomaterials.

  • PDF

Analysis of a.c. Characteristics in Cr-doped ZnO Using Dielectric Functions (Cr을 첨가한 ZnO의 유전함수를 이용한 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.16-16
    • /
    • 2009
  • ZnO($Zn_{1+x}O$)는 n-type 반도성 세라믹스로 우수한 전기적, 광학적, 화학적 특성을 갖고 있어 바리스터, 투명 전도막, 화학 및 바이오 센서, UV light emitter 등 다양한 용도로 사용되고 있다. 또한 ZnO에 각종 천이 금속 산화물을 일정량 첨가함에 따라 발생하는 결함준위와 입계 특성의 변화에 대한 연구가 활발히 진행되고 있다. 다양한 천이 금속 산화물의 첨가에 따른 전기적 광학적 특성의 변화에 대한 결과들이 많이 보고되고 있지만 서로 상충되거나 해석상 다소 어려운 것으로 알려져 있다. 따라서 본 연구에서는 ZnO에 $Cr_2O_3$를 2.0 at% 첨가하여 Cr 첨가에 따른 ZnO의 결함준위와 입계 특성 변화에 대하여 각종 유전함수($Z^*$, $Y^*$, $M^*$, $\varepsilon^*$, and $tan{\delta}$)를 이용하여 고찰하였다 ZnO에 Cr을 첨가할 경우 결함 중 장범위 쿨롱 인력에 의한 결함(0.13~0.18 eV)이 ~100K 영역에서 나타났으며, ZnO 내 결함 중 대표적인 $Zn_j$$V_o$는 서로 겹쳐서 나타났다. 이들 중첩된 결함에 대하여 각종 유전함수를 이용할 경우 서로 분리해 낼 수 있는 강점이 있음을 논하였다. 또한 각 결함준위가 강는 정전용랑(C)과 저항(R)을 impedance-modulus spectroscopy를 이용하여 구한 결과, 소결온도가 높아질수록 정전용량은 증가하였으며, 측정온도가 놓아질수록 높아지는 경향을 나타내었다. 입계의 정전용량은 소결온도가 높아질수록 높아 지지만 측정온도가 높아질수록 낮아지는 경향을 나타내었다. 각 저항값은 소결온도 및 측정온도가 높아질수록 지수적으로 감소하였다. 또한 분포함수를 이용하여 입계 안정성에 대하여 고찰하였다.

  • PDF

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Reliability-Based Design of Sight Distance, a Revisit (신뢰성을 고려한 도로 시거 설계의 제고)

  • Lee, Seul-Gi;Lee, Yong-Jae;Kim, Sang-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.121-131
    • /
    • 2006
  • Considering characteristics of drivers and vehicles with proper and reliable ways in highway design Procedures can ensure high level of highway safety. However, it is almost impossible to take into account all factors of drivers and vehicles influencing on the highway safety because of their uncertain and random nature. To detour the dead-end, the nature are usually assumed as simple homogeneous and deterministic one. Although the restricted assumption makes the system simple, it can produce serious problems due to lack of considering variability in the system. This paper develops a reliability-based method for determining stopping sight distance(SSD) and intersection sight distance (ISD), which are crucial elements in highway alignment design. In the study, Hasofer-Lind method is adopted. which is a well-known first-order second moment reliability method (AFOSM) The results in this study show that if mean, variance, and distribution of a particular driver-vehicle parameter are known, more reliable sight distances can be applied in highway design procedures because we can reflect uncertainties and randomness. Thus, the Probabilistic method could be adopted in designing the sight distance(s) with the desired reliability level.

A Study on characteristic of a double resonant type high frequency inverter using Phase-Shift (Phase-Shift를 이용한 복공진형 고주파 인버터의 특성에 관한 연구)

  • 조규판;김종해;남승식;김동희;노채균;배영호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.109-117
    • /
    • 2000
  • A full bridge type double resonant high frequency resonant inverter to give VVVF function in the inverter used as power source of induction heating at high frequency is presented in this paper. This proposed inverter can reduce distribution of the switching current because of using the current of serial resonant circuit to the input current of the parallel one and this paper also realize the output control of independence irrespective of the switching frequency using Phase-shift. The analysis of the proposed circuit is generally described by using the normalized parameters. Also, the principle of basic operating and the its characteristics are estimated by the parameters, such as switching frequency, the variation of phase angle ($\phi$) of Phase-shift.

  • PDF

Efficient Shadow-Test Algorithm for the Simulation of Dry Etching and Topographical Evolution (건식 식각 공정 시뮬레이션을 위한 효율적인 그림자 테스트 알고리즘과 토포그래피 진화에 대한 연구)

  • Kwon, Oh-Seop;Ban, Yong-Chan;Won, Tae-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.41-47
    • /
    • 1999
  • In this paper, we report 3D-simulations of a plasma etching process by employing cell-removal algorithm takes into account the mask shadow effect os well as spillover errors. The developed simulator haas an input interface to take not only an analytic form but a Monte Carlo distribution of the ions. The graphic user interface(GUI) was also built into the simulator for UNIX environment. To demonstrate the capability of 3D-SURFILER(SURface proFILER), we have simulated for a typical contact hole structure with 36,000($30{\times}40{\times}30$) cells, which takes about 20 minutes with 10 Mbytes memory on sun ultra sparc 1. as an exemplary case, we calculated the etch profile during the reactive ion etching(RIE) of a contact hole wherein the aspect ratio is 1.57. Furthermore, we also simulated the dependence of a damage parameter and the evolution of topography as a function of the chamber pressure and the incident ion flux.

  • PDF

Regional Myocardial Blood Flow Estimation Using Rubidium-82 Dynamic Positron Emission Tomography and Dual Integration Method (Rubidium-82 심근 Dynamic PET 영상과 이중적분법을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • 곽철은;정재민
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.223-230
    • /
    • 1995
  • This study investigates a combined mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery occlusion and in patients with ischemic myocardial diseases using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Thirty four Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and six to seven regions of interest were drawn on each transaxial slices, one on left ventricular chamber for input function and the others on normal and decreased perfusion myocardial segments for the flow estimation in those regions. Two compartment model and graphical analysis method have been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the two parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (I) two compartment model suggested by Kety-Schmidt, with proper modification of the measured data and volume of distribution, could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion in previously used graphical analysis, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

Structural characteristics of Zachery treated turquoise (Zachery 처리 터키석의 표면 특성 평가)

  • Kwon, Ki-Ran;Bang, Sin-Young;Park, Jong-Wan;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • The surface characteristics of Zachery-treated turquoise stones have been studied in detail with a comparison of natural and plastic-impregnated turquoise. The SEM-EDS analysis exhibited that Zachery-treated turquoise was characterized by the uniform distribution of potassium element through the specimen and did not show the sharp crystalline $SiO_2$ facet and boundary phase which are common in natural ore. The potassium element shown in the Zachery-treated turquoise seemed to be occurred during the treatment process for the improvement of durability. The bar-shaped crystals observed in the pore was found to be a feature of Zachery treated turquoise and are expected to influence on their stability and durability, while the pore sizes in turquoise stones depends on the parameter of the treatment procedure.