• 제목/요약/키워드: distribution of elements

검색결과 1,634건 처리시간 0.029초

粒子狀 物質中 金屬成分의 密度分布 (Density Distributions of Metallic Compounds in Particulate Matters)

  • 허문영;김형춘;손동헌
    • 한국대기환경학회지
    • /
    • 제2권2호
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF

배전계통 운영의 중요요소들을 고려한 상시연계점 선정 종합 최적화 알고리즘 (Synthetically Optimal Tie Switches Selection Algorithm Considering Important Elements in Distribution Power System)

  • 김준호;임희택;유남철;임일형;최면송;이승재;하복남
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2079-2088
    • /
    • 2009
  • The optimal operation in distribution system is to select tie switches considering important elements(Load balance, Loss minimization, Voltage drop, Restoration index..) in distribution system. Optimal Tie Switches Selection is very important in operation of distribution system because that is closely related with efficiency and reliability. In this paper, a new algorithm considering important elements is proposed to find optimal location of tie switches. In the case study, the proposed algorithm has been testified using real distribution network of KEPCO for verifying algorithm and complex network for applying future distribution network.

커플링 모델을 이용한 대차프레임 용접부 응력 해석 (Stress Analysis on Weld Zone of Railway Bogie Frame Using Coupling Model)

  • 정순철;전현규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.830-835
    • /
    • 2007
  • In this paper, stress analyses using shell and solid elements on weld zone of railway bogie frame were performed. To calculate stress distribution on weld zone, a coupling model using shell and solid elements was suggested. For this purpose, we performed specimen analyses on T-type solid and shell model of T-type panels which were modeled using shell elements, solid elements and coupled elements, respectively. The result showed that the stress concentration at weld zone was occurred in solid model, but it didn't occur in shell model. And the stress distribution of coupled model was similar to that of solid model. Also, we applied the coupled modeling method on the analysis on weld zone of bogie frame. The stress distribution of coupled model showed much higher compared to that of shell only model. Therefore, the coupled model method is highly recommended for the stress analysis in weld zone of bogie frame.

  • PDF

Identification of Critical Elements in Water Distribution Networks using Resilience Index Measurement

  • Marlim, Malvin Samuel;Jeong, Gimoon;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.162-162
    • /
    • 2019
  • Water Distribution Network (WDN) is a critical infrastructure to be maintained ensuring proper water supply to wide-spread consumers. The WDN consists of pipes, valves, pumps and tanks, and these elements interact each other to provide adequate system performance. If elements fail by internal or external interruptions, it may result in adverse impact to water service with different degree depending on the failed element. To determine an appropriate maintenance priority, the critical elements need to be identified and mapped in the network. In order to identify and prioritize the critical elements in WDN, an element-based simulation approach is proposed, in which all the elements composing the WDN are reviewed one at a time. The element-based criticality is measured using several resilience indexes that are newly developed in this study. The proposed resilience indexes are used to quantify the impacts of element failure to water service degradation. Here, three resilience indexes are developed, such as User Demand Severity, Economic Value Loss and Water Age Degradation, each of which intends to measure different aspects of consequences, such as social, economic, and water quality, respectively. For demonstration, the proposed approach is applied to a benchmark water network to identify and prioritize the critical elements.

  • PDF

Thinning of 2D and 3D Fractal Antenna Arrays with Bounded and Unbounded Fractal Distribution Functions for Celestial Communications

  • Ponnapalli, Venkata Aditya Sankar;Jayasree, Pappu Venkata Yasoda
    • ETRI Journal
    • /
    • 제38권6호
    • /
    • pp.1135-1144
    • /
    • 2016
  • Fractal antenna arrays are geometry-based thinned arrays having multiband applications. The major challenge of these arrays is their large number of elements at higher expansion factors. This article presents the thinning of fractal antenna arrays while maintaining an appropriate balance between the side lobe level and beam width by using various quantized fractal distribution functions. A 2D square fractal antenna array and 3DSierpinski gasket antenna array are considered in this article to validate the proposed distribution functions. Nearly one third of the antenna elements are thinned in each successive iteration except in the case of a one-count distribution function. The proposed technique can simplify practical implementation and exhibits better performance for various parameters such as the side lobe level, side lobe angle, and half power beam width than fully populated fractal antenna arrays.

지형요소를 활용한 충북 논매기소리의 전파 특성 분석: 짧은방아 및 상사류를 사례로 (Analysis of Propagation Characteristics of a Song Sung when Weeding a Rice in Chungcheongbuk-do Using the Geomorphic Elements: The Case of Short Bang-a and Sangsa ryu)

  • 박현수;장동호
    • 한국지형학회지
    • /
    • 제23권2호
    • /
    • pp.61-70
    • /
    • 2016
  • This study intended to analyze the spatial distribution of two types of weeding song (Short Bang-a and Sangsa ryu) and how geomorphic elements influence the propagation of the songs in Chungcheongbuk-do area. The distribution of the two types of song was mapped as point data. According to the result, both types showed similar distribution pattern. In order to figure out the reason of this similarity, the distribution pattern of songs was analyzed at various scales based on geomorphic elements including river, mountain and lineament. The result showed that most of distribution pattern of songs followed the lineament direction. Also, the spatial continuity among mountain that was formed by large and small lineament in various directions could be the path of the cultural diffusion. If the lineament with same direction does not intersect other lineament that have different direction, spatial continuity would be blocked. Consequently it was confirmed that propagation of songs has not spread smoothly.

Evaluating the spread plasticity model of IDARC for inelastic analysis of reinforced concrete frames

  • Izadpanaha, Mehdi;Habibi, AliReza
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.169-188
    • /
    • 2015
  • There are two types of nonlinear analysis methods for building frameworks depending on the method of modeling the plastification of members including lumped plasticity and distributed plasticity. The lumped plasticity method assumes that plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements. The distributed plasticity method discretizes the structural members into many line segments, and further subdivides the cross-section of each segment into a number of finite elements. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread form the joint interface resulting in a curvature distribution. The program IDARC includes a spread plasticity formulation to capture the variation of the section flexibility, and combine them to determine the element stiffness matrix. In this formulation, the flexibility distribution in the structural elements is assumed to be the linear. The main objective of this study is to evaluate the accuracy of linear flexibility distribution assumed in the spread inelasticity model. For this purpose, nonlinear analysis of two reinforced concrete frames is carried out and the linear flexibility models used in the elements are compared with the real ones. It is shown that the linear flexibility distribution is incorrect assumption in cases of significant gravity load effects and can be lead to incorrect nonlinear responses in some situations.

Stress analysis of a postbuckled laminated composite plate

  • Chai, Gin-Boay;Chou, Siaw Meng;Ho, Chee-Leong
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.377-386
    • /
    • 1999
  • The stress distribution in a symmetrically laminated composite plate subjected to in-plane compression are evaluated using finite element analysis. Six different finite element models are created for the study of stresses in the plate after buckling. Two finite element modelling approaches are adopted to obtain the stress distribution. The first approach starts with a full model of shell elements from which sub-models of solid elements are spin-off The second approach adopts a full model of solid elements at the beginning from which sub-models of solid elements are created. All sub-models have either 1-element thickness or 14-element thickness. Both techniques show high interlaminar direct and shear stresses at the free edges. The study also provides vital information of the distribution of all components of stresses along the unloaded edges in length direction and also in the thickness direction of the plate.

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

Dynamic analysis of a functionally graded tapered rotating shaft under thermal load via differential quadrature finite elements method

  • Fethi, Hadjoui;Ahmed, Saimi;Ismail, Bensaid;Abdelhamid, Hadjoui
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.19-49
    • /
    • 2023
  • The present study proposes a theoretical and numerical investigation on the dynamic response behaviour of a functional graded (FG) ceramic-metal tapered rotor shaft system, by the differential quadrature finite elements method (DQFEM) to identify the natural frequencies for modelling and analysis of the structure with suitable validations. The purpose of this paper is to explore the influence of heat gradients on the natural frequency of rotation of FG shafts via three-dimensional solid elements, as well as a theoretical examination using the Timoshenko beam mode, which took into account the gyroscopic effect and rotational inertia. The functionally graded material's distribution is described by two distribution laws: the power law and the exponential law. To simulate varied thermal conditions, radial temperature distributions are obtained using the nonlinear temperature distribution (NLTD) and exponential temperature distribution (ETD) approaches. This work deals with the results of the effect on the fundamental frequencies of different material's laws gradation and temperature gradients distributions. Attempts are conducted to identify adequate explanations for the behaviours based on material characteristics. The effect of taper angle and material distribution on the dynamic behaviour of the FG conical rotor system is discussed.