• Title/Summary/Keyword: distribution models

Search Result 3,696, Processing Time 0.048 seconds

Effectiveness of a Wave Resonator under Short-period Waves and Solitary Waves (공진장치를 이용한 단주기파랑과 고립파의 제어)

  • Lee, Kwang Ho;Jeong, Seong Ho;Jeong, Jin Woo;Kim, Do Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.89-100
    • /
    • 2010
  • The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.

Radar Rainfall Adjustment by Artificial Neural Network and Runoff Analysis (신경망에 의한 레이더강우 보정 및 유출해석)

  • Kim, Soo Jun;Kwon, Young Soo;Lee, Keon Haeng;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.159-167
    • /
    • 2010
  • The purpose of this study is to get the adjusted radar rainfalls by ANN(Artificial Neural Network) method. In the case of radar rainfall, it has an advantage of spatial distribution characteristics of rainfall while point rainfall has an advantage at the point. Therefore we adjusted the radar rainfall by ANN method considering the advantages of two rainfalls of radar and point. This study constructed two ANN models of Model I and Model II for radar rainfall adjustment. We collected the three rainfall events and adjusted the radar rainfall for Anseong-cheon basin. The two events were inputted into the Modeland Model to derive the optimum parameters and the rest event was used for validation. The adjusted radar rainfalls by ANN method and the raw radar rainfall were used as the input data of ModClark model which is a semi-distributed model to simulate the runoff. As the results of the simulation, the runoff by raw radar rainfall were overestimated but the peak time and peak runoff from the adjusted rainfall by ANN were well fitted to the observed hydrograph.

Unmanned AerialVehicles Images Based Tidal Flat Surface Sedimentary Facies Mapping Using Regression Kriging (회귀 크리깅을 이용한 무인기 영상 기반의 갯벌 표층 퇴적상 분포도 작성)

  • Geun-Ho Kwak;Keunyong Kim;Jingyo Lee;Joo-Hyung Ryu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.537-549
    • /
    • 2023
  • The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

Environmental Equity Analysis of Fine Dust in Daegu Using MGWR and KT Sensor Data (다중 스케일 지리가중회귀 모형과 KT 측정기 자료를 활용한 대구시 미세먼지에 대한 환경적 형평성 분석)

  • Euna CHO;Byong-Woon JUN
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.218-236
    • /
    • 2023
  • This study attempted to analyze the environmental equity of fine dust(PM10) in Daegu using MGWR(Multi-scale Geographically Weighted Regression) and KT(Korea Telecom Corporation) sensor data. Existing national monitoring network data for measuring fine dust are collected at a small number of ground-based stations that are sparsely distributed in a large area. To complement these drawbacks, KT sensor data with a large number of IoT(Internet of Things) stations densely distributed were used in this study. The MGWR model was used to deal with spatial heterogeneity and multi-scale contextual effects in the spatial relationships between fine dust concentration and socioeconomic variables. Results indicate that there existed an environmental inequity by land value and foreigner ratio in the spatial distribution of fine dust in Daegu metropolitan city. Also, the MGWR model showed better the explanatory power than Ordinary Least Square(OLS) and Geographically Weighted Regression(GWR) models in explaining the spatial relationships between the concentration of fine dust and socioeconomic variables. This study demonstrated the potential of KT sensor data as a supplement to the existing national monitoring network data for measuring fine dust.

Analysis of High School Students' Conceptual Change in Model-Based Instruction for Blood Circulation (혈액 순환 모형 기반 수업에서 고등학생들의 개념 변화 분석)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.5
    • /
    • pp.379-393
    • /
    • 2007
  • The purpose of this article is to analyze the conceptual change of nine 11th graders after implementing the model-based instruction of blood circulation by multidimensional framework, and to find some implications about teaching strategies for improving conceptual understanding. The model-based instruction consisted of 4 periods: (1) introduction for inducing students' interests using an episode in the science history of blood circulation, (2) vivisectional experiment on rats, (3) visual-linguistic model instruction using the videotape of heartbeat, and (4) modeling activity on the path of blood flow. Based on the data from pre-test, post-test and interviews, we classified students' models on the path of blood flow, and investigated their ontological features and the conceptual status of blood circulation. Most students could describe the path of blood flow and the changes of substances in blood precisely after the instructions. However, the modeling activity were not sufficient to improve students' understanding of the mechanisms of the blood distribution throughout various organs and the material exchanges between blood and tissues. From the interview of 9 students, we acquired informative results about conceptual status elements that were helpful to, preventing from, or not used for students' understanding. It was also found that conceptual status of students depended on the ontological categories into which students' conceptions of blood circulation fell. The results of this study can help design the effective teaching strategy for the understanding of concept of the equilibrium category.

Evaluation of Biological Activity of Veronica incana Extracts (Veronica incana 추출물의 생물학적 활성 평가)

  • Mi-Rae Shin;Mi Yeong Yoon;Min Ju Kim;Il-Ha Jeong;Hui Yeon An;Ji-Won Jung;Seong-Soo Roh
    • The Korea Journal of Herbology
    • /
    • v.39 no.3
    • /
    • pp.57-67
    • /
    • 2024
  • Objectives : The aim of this study is to evaluate the potential biological activity of Veronica incana extracts (VIE) through in vitro, ex vivo, and in vivo experiments. Methods : In vitro, we conducted analyses on the total polyphenol (TP) and total flavonoid (TF) levels, alongside DPPHand ABTS radical scavenging activities. Ex vivo evaluations on adipose tissue measured glycerol release as a marker of lipolysis. In LPS-induced RAW 264.7 cells, we quantified nitric oxide (NO) production. Following H2O2 induction in U2OS cells, we performed mitochondrial assays such as MitoSox and MitoTracker. Moreover, Bodipy assays were conducted in 3T3-L1 cells. In vivo, we performed anti-osteoarthritis effect of VIE against monosodium iodoacetate (MIA)-induced osteoarthritis in rats. Results : The results presented encompass a myriad of models, from cell culture to animal experiments as well as ex vivo studies. VIE demonstrated high TP and TF contents, potent DPPH and ABTS scavenging activities, and regulated glycerol release. Moreover, the inhibition of NO production in LPS-induced inflammation was notably confirmed and the reduction of lipid droplets was distinctly shown. Furthermore, in H2O2-induced U2OS cells, MitoSox was effectively reduced while MitoTracker noticeably increased. In vivo assays confirmed a significant increase in hindpaw weight distribution (HWD) decreased by MIA after VIE treatment. Additionally, VIE inhibited serum inflammatory cytokines (TNF-𝛼, IL-6, and IL-1𝛽) and MDA levels in joint tissue. Conclusion : In conclusion, Veronica incana exhibited various pharmacological effects including antioxidant, anti-obesity, and anti-inflammatory properties.

Application of a Climate Suitability Model to Assess Spatial Variability in Acreage and Yield of Wheat in Ukraine (우크라이나 밀 재배 면적 및 수량의 공간적 변이 평가를 위한 기후적합도 모델의 활용)

  • Jin Yeong Oh;Shinwoo Hyun;Seungmin Hyun;Kwang Soo Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2024
  • It would be advantageous to predict acreage and yield of crops in major grain-exporting countries, which would improve decisions on policy making and grain trade in Korea. A climate suitability model can be used to assess crop acreage and yield in a region where the availability of observation data is limited for the use of process-based crop models. The objective of this study was to determine the climate suitability index of wheat by province in Ukraine, which would allow for the spatial assessment of acreage and yield for the given crop. In the present study, the official data of wheat acreage and yield were collected from the State Statistics Service of Ukraine. The EarthStat data, which is a data product derived from satellite data and official crop reports, were also gathered for the comparison with the map of climate suitability index. The Fuzzy Union model was used to create the climate suitability maps under the historical climate conditions for the period from 1970 to 2000. These maps were compared against actual acreage and yield by province. It was found that the EarthStat data for acreage and yield of wheat differed from the corresponding official data in several provinces. On the other hand, the climate suitability index obtained using the Fuzzy Union model explained the variation in acreage and yield at a reasonable degree. For example, the correlation coefficient between the climate suitability index and yield was 0.647. Our results suggested that the climate suitability index could be used to indicate the spatial distribution of acreage and yield within a region of interest.

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.