Lee, Kwang Ho;Jeong, Seong Ho;Jeong, Jin Woo;Kim, Do Sam
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.1B
/
pp.89-100
/
2010
The performance evaluation of a conventional Wave Resonator at the entrance of harbors against solitary wave has been performed using 3D numerical wave flume. A wave resonator has been designed for the attenuation of the transmitted wave energy by trapping the short periodic incident waves only. In this study, however, the controlled performance of the wave resonator by its various widths has been numerically investigated for solitary waves. Source distribution method based on the Green function and the 3D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) using 3D numerical wave flume were used for the short-periodic waves and the solitary waves, respectively, and these models were verified through the comparisons with the previous experimental and numerical results by other researchers. It was confirmed that the wave resonator is effective enough to control the solitary waves as well as the periodic waves when it compares with the case of no resonance system. Further, it was found that there is the optimal width of a wave resonator to attenuate the target solitary waves.
Kim, Soo Jun;Kwon, Young Soo;Lee, Keon Haeng;Kim, Hung Soo
KSCE Journal of Civil and Environmental Engineering Research
/
v.30
no.2B
/
pp.159-167
/
2010
The purpose of this study is to get the adjusted radar rainfalls by ANN(Artificial Neural Network) method. In the case of radar rainfall, it has an advantage of spatial distribution characteristics of rainfall while point rainfall has an advantage at the point. Therefore we adjusted the radar rainfall by ANN method considering the advantages of two rainfalls of radar and point. This study constructed two ANN models of Model I and Model II for radar rainfall adjustment. We collected the three rainfall events and adjusted the radar rainfall for Anseong-cheon basin. The two events were inputted into the Modeland Model to derive the optimum parameters and the rest event was used for validation. The adjusted radar rainfalls by ANN method and the raw radar rainfall were used as the input data of ModClark model which is a semi-distributed model to simulate the runoff. As the results of the simulation, the runoff by raw radar rainfall were overestimated but the peak time and peak runoff from the adjusted rainfall by ANN were well fitted to the observed hydrograph.
The distribution characteristics of tidal flat sediment components are used as an essential data for coastal environment analysis and environmental impact assessment. Therefore, a reliable classification map of surface sedimentary facies is essential. This study evaluated the applicability of regression kriging to generate a classification map of the sedimentary facies of tidal flats. For this aim, various factors such as the number of field survey data and remote sensing-based auxiliary data, the effect of regression models on regression kriging, and the comparison with other prediction methods (univariate kriging and regression analysis) on surface sedimentary facies classification were investigated. To evaluate the applicability of regression kriging, a case study using unmanned aerial vehicle (UAV) data was conducted on the Hwang-do tidal flat located at Anmyeon-do, Taean-gun, Korea. As a result of the case study, it was most important to secure an appropriate amount of field survey data and to use topographic elevation and channel density as auxiliary data to produce a reliable tidal flat surface sediment facies classification map. In addition, regression kriging, which can consider detailed characteristics of the sediment distributions using ultra-high resolution UAV data, had the best prediction performance compared to other prediction methods. It is expected that this result can be used as a guideline to produce the tidal flat surface sedimentary facies classification map.
Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
Korean Journal of Remote Sensing
/
v.39
no.6_3
/
pp.1679-1692
/
2023
South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.
Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.
Journal of the Korean Association of Geographic Information Studies
/
v.26
no.4
/
pp.218-236
/
2023
This study attempted to analyze the environmental equity of fine dust(PM10) in Daegu using MGWR(Multi-scale Geographically Weighted Regression) and KT(Korea Telecom Corporation) sensor data. Existing national monitoring network data for measuring fine dust are collected at a small number of ground-based stations that are sparsely distributed in a large area. To complement these drawbacks, KT sensor data with a large number of IoT(Internet of Things) stations densely distributed were used in this study. The MGWR model was used to deal with spatial heterogeneity and multi-scale contextual effects in the spatial relationships between fine dust concentration and socioeconomic variables. Results indicate that there existed an environmental inequity by land value and foreigner ratio in the spatial distribution of fine dust in Daegu metropolitan city. Also, the MGWR model showed better the explanatory power than Ordinary Least Square(OLS) and Geographically Weighted Regression(GWR) models in explaining the spatial relationships between the concentration of fine dust and socioeconomic variables. This study demonstrated the potential of KT sensor data as a supplement to the existing national monitoring network data for measuring fine dust.
Journal of The Korean Association For Science Education
/
v.27
no.5
/
pp.379-393
/
2007
The purpose of this article is to analyze the conceptual change of nine 11th graders after implementing the model-based instruction of blood circulation by multidimensional framework, and to find some implications about teaching strategies for improving conceptual understanding. The model-based instruction consisted of 4 periods: (1) introduction for inducing students' interests using an episode in the science history of blood circulation, (2) vivisectional experiment on rats, (3) visual-linguistic model instruction using the videotape of heartbeat, and (4) modeling activity on the path of blood flow. Based on the data from pre-test, post-test and interviews, we classified students' models on the path of blood flow, and investigated their ontological features and the conceptual status of blood circulation. Most students could describe the path of blood flow and the changes of substances in blood precisely after the instructions. However, the modeling activity were not sufficient to improve students' understanding of the mechanisms of the blood distribution throughout various organs and the material exchanges between blood and tissues. From the interview of 9 students, we acquired informative results about conceptual status elements that were helpful to, preventing from, or not used for students' understanding. It was also found that conceptual status of students depended on the ontological categories into which students' conceptions of blood circulation fell. The results of this study can help design the effective teaching strategy for the understanding of concept of the equilibrium category.
Objectives : The aim of this study is to evaluate the potential biological activity of Veronica incana extracts (VIE) through in vitro, ex vivo, and in vivo experiments. Methods : In vitro, we conducted analyses on the total polyphenol (TP) and total flavonoid (TF) levels, alongside DPPHand ABTS radical scavenging activities. Ex vivo evaluations on adipose tissue measured glycerol release as a marker of lipolysis. In LPS-induced RAW 264.7 cells, we quantified nitric oxide (NO) production. Following H2O2 induction in U2OS cells, we performed mitochondrial assays such as MitoSox and MitoTracker. Moreover, Bodipy assays were conducted in 3T3-L1 cells. In vivo, we performed anti-osteoarthritis effect of VIE against monosodium iodoacetate (MIA)-induced osteoarthritis in rats. Results : The results presented encompass a myriad of models, from cell culture to animal experiments as well as ex vivo studies. VIE demonstrated high TP and TF contents, potent DPPH and ABTS scavenging activities, and regulated glycerol release. Moreover, the inhibition of NO production in LPS-induced inflammation was notably confirmed and the reduction of lipid droplets was distinctly shown. Furthermore, in H2O2-induced U2OS cells, MitoSox was effectively reduced while MitoTracker noticeably increased. In vivo assays confirmed a significant increase in hindpaw weight distribution (HWD) decreased by MIA after VIE treatment. Additionally, VIE inhibited serum inflammatory cytokines (TNF-𝛼, IL-6, and IL-1𝛽) and MDA levels in joint tissue. Conclusion : In conclusion, Veronica incana exhibited various pharmacological effects including antioxidant, anti-obesity, and anti-inflammatory properties.
Jin Yeong Oh;Shinwoo Hyun;Seungmin Hyun;Kwang Soo Kim
Korean Journal of Agricultural and Forest Meteorology
/
v.26
no.1
/
pp.75-88
/
2024
It would be advantageous to predict acreage and yield of crops in major grain-exporting countries, which would improve decisions on policy making and grain trade in Korea. A climate suitability model can be used to assess crop acreage and yield in a region where the availability of observation data is limited for the use of process-based crop models. The objective of this study was to determine the climate suitability index of wheat by province in Ukraine, which would allow for the spatial assessment of acreage and yield for the given crop. In the present study, the official data of wheat acreage and yield were collected from the State Statistics Service of Ukraine. The EarthStat data, which is a data product derived from satellite data and official crop reports, were also gathered for the comparison with the map of climate suitability index. The Fuzzy Union model was used to create the climate suitability maps under the historical climate conditions for the period from 1970 to 2000. These maps were compared against actual acreage and yield by province. It was found that the EarthStat data for acreage and yield of wheat differed from the corresponding official data in several provinces. On the other hand, the climate suitability index obtained using the Fuzzy Union model explained the variation in acreage and yield at a reasonable degree. For example, the correlation coefficient between the climate suitability index and yield was 0.647. Our results suggested that the climate suitability index could be used to indicate the spatial distribution of acreage and yield within a region of interest.
Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
Korean Journal of Radiology
/
v.23
no.12
/
pp.1269-1280
/
2022
Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.