• Title/Summary/Keyword: distributed systems

Search Result 4,009, Processing Time 0.038 seconds

Agent-based Collaborative Simulation Architecture for Distributed Manufacturing Systems (분산 생산 시스템을 위한 에이전트 기반의 협업 시뮬레이션 체계)

  • Cha Yeong Pil;Jeong Mu Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.808-813
    • /
    • 2003
  • Maintaining agility and responsiveness m designing and manufacturing activities are the key issues for manufacturing companies to cope with global competition. Distributed design and control systems are regarded as an efficient solution for agility and responsiveness. However, distributed nature of a manufacturing system complicates production activities such as design, simulation, scheduling, and execution control. Especially, existing simulation systems have limited external integration capabilities, which make it difficult to implement complex control mechanisms for the distributed manufacturing systems. Moreover, integration and coupling of heterogeneous components and models are commonly required for the simulation of complex distributed systems. In this paper, a collaborative and adaptive simulation architecture is proposed as an open framework for simulation and analysis of the distributed manufacturing enterprises. By incorporating agents with their distributed characteristics of autonomy, intelligence, and goal-driven behavior, the proposed agent-based simulation architecture can be easily adapted to support the agile and distributed manufacturing systems. The architecture supports the coordination and cooperation relations, and provides a communication middleware among the participants in simulation.

  • PDF

Implementing Embedded systems with ORB for Distributed Control Systems

  • Kim, Kangsoo;Myungsun Ryou;Wookhyun Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.94.3-94
    • /
    • 2002
  • Modern distributed control systems focus on system openness, network system architecture and PC based controller. This paper discusses the embedded systems with ORB for distributed control systems. Embedded systems have merits such as small size, low cost and user convenience. ORB allows users to program easily by using IDL and provides client/server network for heterogeneous platforms. By using embedded systems and ORB, we implement the system and validate it by using VME system. The developed system has benefits when it is applied to distributed control systems.

  • PDF

Middleware Architecture for Open Control Systems in the Distributed Computing Environment

  • Lee, Wongoo;Park, Jaehyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.190-195
    • /
    • 2001
  • The advance of computer, network, and Internet technology enables the control systems to process the massive data in the distributed computing environments. To implement and maintain the software in distributed environment, the component-based methodology is widely used. This paper proposes the middleware architecture for the distributed computer control system. With the proposed middleware services, it is relatively easy to maintain compatibility between products and to implement a portable control application. To achieve the compatibility between heterogeneous systems, the proposed architecture provides the communication protocols based on the XML with lightweight event-based service.

  • PDF

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems

  • Park, Sung-Hoon
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.30-34
    • /
    • 2011
  • A Leader is a Coordinator that supports a set of processes to cooperate a given task. This concept is used in several domains such as distributed systems, parallelism and cooperative support for cooperative work. In completely asynchronous systems, there is no solution for the election problem satisfying both of safety and liveness properties in asynchronous distributed systems. Therefore, to solve the election problem in those systems, one property should be weaker than the other property. If an election algorithm strengthens the safety property in sacrifice of liveness property, it would not nearly progress. But on the contrary, an election algorithm strengthening the liveness property in sacrifice of the safety property would have the high probability of violating the safety property. In this paper, we presents a safety strengthened Leader Election protocol with an unreliable failure detector and analyses it in terms of safety and liveness properties in asynchronous distributed systems.

Analysis of the System Impact of Distributed Generation using EMTP

  • Yeo, Sang-Min;Kim, Il-Dong;Kim, Chul-Hwan;Aggarwal, Raj
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.201-206
    • /
    • 2004
  • With the advent of distributed generation, power systems in general are impacted in regards to stability and power quality. Distributed generation has positive impacts on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has negative impacts on the decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it is complicated to analyze power systems that have distributed generation. The types of distributed generation usually are classified as the rotating machinery system and the inverter-based system. In this paper, distributed generation is designed as a synchronous generator, and the distribution system with its distributed generation model is simulated using EMTP. In addition, this paper shows the simulation results according to the types of distributed generation

Development of the Distributed Real-time Simulation System Based on HLA and DEVS (DEVS형식론을 적응한 HLA기반의 분산 실시간 시뮬레이션 시스템 개발)

  • Kim, Ho-Jeong;Lee, Jae-Hyun;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.25-32
    • /
    • 2006
  • Weapon systems composed of several subsystems execute various engagement missions in distributed combat environments in cooperation with a large number of subordinate/adjacent weapon systems as well as higher echelons through tactical data links. Such distributed weapon systems require distributed real-time simulation test beds to integrate and test their operational software, analyze their performance and effects of cooperated engagement, and validate their requirement specifications. These demands present significant challenges in terms of real-time constraints, time synchronization, complexity and development cost of an engagement simulation test bed, thus necessitate the use of high-performance distributed real-time simulation architectures, and modeling and simulation techniques. In this paper, in order to meet these demands, we presented a distributed real-time simulation system based on High Level Architecture(HLA) and Discrete Event System Specification(DEVS). We validated its performance by using it as a test bed for developing the Engagement Control System(ECS) of a surface-to-air missile system. The proposed technique can be employed to design a prototype or model of engagement-level distributed real-time simulation systems.

Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform (고속 WALSH 변환에 의한 분포정수계의 최적제어)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

Analysis of System Impact of the Distributed Generation Using EMTP with Particular Reference to Voltage Sag

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.122-128
    • /
    • 2004
  • With the advent of distributed generation, power systems are fundamentally impacted in regards to stability and power quality. Distributed generation has a positive impact on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has a negative impact on decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it becomes complicated to analyze a power system with distributed generation. The types of distributed generation are usually classified by both rotating machinery and the inverter-based system. In this paper, distributed generation is designed by rotating machinery, and the distributed system having a model of the distributed generation is simulated using EMTP. In addition, this paper presents the simulation results according to the types of distributed generation.