• Title/Summary/Keyword: distributed strain sensing

Search Result 28, Processing Time 0.021 seconds

Strain monitoring of the rail during train loading condition using optical fiber sensor (광섬유센서를 이용한 열차하중 작용시 레일의 변형을 모니터링)

  • Yoon, Hyuk-Jin;Song, Kwang-Yong;Kim, Dae-Sang;Kim, Ki-Hwan;Kim, Jung-Seok;Kwon, Tae-Soo;Na, Hee-Seung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1514-1518
    • /
    • 2009
  • Recently, railroad construction has been increased all over the world and as the train is getting high-speeded, there has been a need for guaranteed safety, so that a requirement for heath monitoring techniques for destruction that generated by gradually accumulated damages is now increasing. Especially the rail is crucial part that contact with wheel directly and delivers the train's load to a sleeper. It needs a technique that can guarantee a safety by sensing the possible cracks. In this paper, when train's load applied to the rail, strain distribution that introduced to entire length of rail is monitored using optical fibre. Optical fibre is used as a medium for measuring the strain and BOCDA (Brillouin Optical Correlation Domain Analysis) system is organized for measuring the distributed variation that implied to optical fibre. Optical fibre is attached at lower flange where tension is maximized when the load of train applied to the rail and strain gauge is implied together to compare the accuracy of measurement.

  • PDF

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

High-Performance Multimodal Flexible Tactile Sensor Capable of Measuring Pressure and Temperature Simultaneously (압력과 온도측정 기능을 갖는 고성능 플렉시블 촉각센서)

  • Jang, Jin-Seok;Kang, Tae-Hyung;Song, Han-Wook;Park, Yon-Kyu;Kim, Min-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.683-688
    • /
    • 2014
  • This paper presents a high-performance flexible tactile sensor based on inorganic silicon flexible electronics. We created 100 nm-thick semiconducting silicon ribbons equally distributed with 1 mm spacing and $8{\times}8$ arrays to sense the pressure distribution with high-sensitivity and repeatability. The organic silicon rubber substrate was used as a spring material to achieve both of mechanical flexibility and robustness. A thin copper layer was deposited and patterned on top of the pressure sensing layer to create a flexible temperature sensing layer. The fabricated tactile sensor was tested through a series of experiments. The results showed that the tactile sensor is capable of measuring pressure and temperature simultaneously and independently with high precision.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Monitoring the Structural Behavior of Reinforced RC Slabs Using Optical Fiber-embedded CFRP Sheets (광섬유 매립 CFRP 시트를 활용한 RC 슬래브의 구조적 거동 모니터링 기술 개발)

  • Kim, Jaehwan;Jung, Kyu-San;Kim, Byeong-Cheol;Kim, Kun-Soo;Park, Ki-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.311-322
    • /
    • 2022
  • This study performed 4-point flexural tests of reinforced concrete to which was attached a distributed optical fiber sheet and carbon fiber reinforced polymer (CFRP) sheets in order to assess the effect of the CFRP sheets and the applicability of a BOTDR sensor simultaneously. To evaluate the reinforcing effect, various degrees of CFRP sheet attachment were manufactured, and to evaluate the sensing ability, strains obtained from a BOTDR sensor were compared with strains measured from electric resistance strain gauges that were attached to the concrete surface. From the results, the reinforcing effects were evidently different according to the attachment type of the CFRP sheets, and it was confirmed that the main influencing factor on the reinforcing effect was the type of attachment rather than the attachment area. The reinforced concrete structural behavior was visualized with strains measured from the BOTDR sensor as load increased, and it was identified that load was concentrated in the CFRP reinforced area. Strains from the BOTDR sensor were similar to those from the electric resistance strain gauge; thereby a BOTDR sensor can be effective in the analysis of structural behaviorsof massive infrastructure. Finally, the strain from a BOTDR sensor was high where CFRP sheet fall-off occurs, and it would therefore be efficient to track local damage locations of CFRP sheets by utilizing a BOTDR sensor.