• Title/Summary/Keyword: distributed sensor networks

Search Result 262, Processing Time 0.02 seconds

Transform domain Wyner-Ziv video coding with successively improving side information based on decoding reliability (복호 신뢰도에 기반하여 점진적으로 보조정보를 향상시키는 변환영역 Wyner-Ziv 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.892-904
    • /
    • 2008
  • As a video encoding in resource constrained environments such as sensor networks has become an important issue, DVC(Distributed Video Coding) has been intensively investigated as a solution for light weighted video encoding problem. Known as one of the representative schemes of DVC, the Wyner-Ziv coding generates side information of current frame only at decoder, using correlation among frames, and reconstructs video through noise elimination on the side information using channel code. Accordingly, the better quality of side information brings less channel noise, thus attains better coding performance of the Wyner-Ziv coder. However, since it is hard for decoder to generate an accurate side information without any information of original frame, a method to successively improve side information using successively decoded original frame, based on decoding reliability, was previously developed. However, to improve side information from decoding results, not only an error rate of the decoding result as a reliability, but also the amount of reliable information from the decoding result is important. Therefore, we propose TDWZ(Transform-domain Wyner-Ziv coding) with successively improving side information based on decoding reliability considering not only an error rate but also the amount of reliable information of the decoding results. Our experiment shows the proposed method gains average PSNR up to 1.7 dB over the previous TDWZ, that is without successive side information improvement.

A Study on Lightweight Block Cryptographic Algorithm Applicable to IoT Environment (IoT 환경에 적용 가능한 경량화 블록 암호알고리즘에 관한 연구)

  • Lee, Seon-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • The IoT environment provides an infinite variety of services using many different devices and networks. The development of the IoT environment is directly proportional to the level of security that can be provided. In some ways, lightweight cryptography is suitable for IoT environments, because it provides security, higher throughput, low power consumption and compactness. However, it has the limitation that it must form a new cryptosystem and be used within a limited resource range. Therefore, it is not the best solution for the IoT environment that requires diversification. Therefore, in order to overcome these disadvantages, this paper proposes a method suitable for the IoT environment, while using the existing block cipher algorithm, viz. the lightweight cipher algorithm, and keeping the existing system (viz. the sensing part and the server) almost unchanged. The proposed BCL architecture can perform encryption for various sensor devices in existing wire/wireless USNs (using) lightweight encryption. The proposed BCL architecture includes a pre/post-processing part in the existing block cipher algorithm, which allows various scattered devices to operate in a daisy chain network environment. This characteristic is optimal for the information security of distributed sensor systems and does not affect the neighboring network environment, even if hacking and cracking occur. Therefore, the BCL architecture proposed in the IoT environment can provide an optimal solution for the diversified IoT environment, because the existing block cryptographic algorithm, viz. the lightweight cryptographic algorithm, can be used.