• Title/Summary/Keyword: distributed query processing

Search Result 130, Processing Time 0.025 seconds

Estimating Join Selectivity of Global XQuery Queries in Distributed Environments (분산 환경에서 전역 XQuery 질의의 조인 선택치 추정 방법)

  • Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.564-571
    • /
    • 2007
  • One of the methods for integrating XML data in distributed environments is using XML view. User can query toward distributed local XML views by using global XQuery queries in XQuery which is a standard query language for searching XML data. The global XQuery queries naturally contain join operations because of integrating and searching distributed heterogeneous data. Since join operations are generally expensive for processing a query, its processing technique is very important for efficient processing of global XQuery queries. Therefore there are some studies on the efficient processing of join operations and one of these studies is that selects minimum join cost by estimating a join selectivity. In case of SQL, there are already some researches for estimating a join selectivity and join cost of global SQL queries. However we can not apply their methods for estimating the selectivity of join operations in SQL queries into XQuery queries because of the structural difference between relational data and XML data. Therefore this paper proposes a method for estimating a selectivity of join operations in XQuery queries using the information of XML views. Our contribution is three threefold. First, we define the difference point for estimating join selectivity between SQL and XQuery. Second, we estimate join selectivity in XQuery queries by referring XML views. Third, we evaluate our estimating method.

Research Directions for Efficient Query Processing over Sensor Data Streams (센서 데이터 스트림 환경에서 효율적인 질의처리 연구방향)

  • An, Dong-Chan
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • The sensor network is a wireless network of the sensor nodes which sensing, computation and communication ability. Each sensor nodes create the data items by sensor nodes above one. Like this feature, the sensor network is similar to distributed data base system. The sensor node of the sensor network is restricted from the power and the memory resources is the biggest weak point and is becoming the important research object. In this paper, We try to see efficient sensor data stream management method and efficient query processing method under the restricted sensor network environment.

  • PDF

The Application and Integration of an Improvement Technique for Layers of NETCONF (NETCONF 계층에 대한 개선 기법 적용 및 통합)

  • Lee, YangMin;Lee, JaeKee
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.256-268
    • /
    • 2016
  • Modern networks consisting of various heterogeneous equipment are often installed in a distributed manner. Thus the NETCONF standard was established to manage networks centrally and efficiently. In this paper, we present a method that integrates each NETCONF layer into a single system based on the results of previous studies. In the RPC Layer, an asynchronous communication channel and parallel processes are possible using multi-threading. In the Operation Layer, operational efficiency is increased by using a data group with dependencies between the equipment configuration data and by improving the data structure, enabling efficiently processing of XML queries even with multiple managers. The data modeling techniques and grouping methods in the Content Layer are presented in detail for interoperability between the Operation Layer and the Content Layer. Finally, the GUI program was implemented and its implementation is reported. We performed an experiment comparing the improved NETCONF with the standard NETCONF to measure factors, such as query processing ratio, query processing speed, and CPU utilization. The improved NETCONF demonstrated excellent query processing ratio and query processing speed, whereas the standard NETCONF had excellent CPU utilization.

A Study on Distribution Query Conversion Method for Real-time Integrating Retrieval based on TMDR (TMDR 기반의 실시간 통합 검색을 위한 분산질의 변환 기법에 대한 연구)

  • Hwang, Chi-Gon;Shin, Hyo-Young;Jung, Kye-Dong;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1701-1707
    • /
    • 2010
  • This study is intended for implementing the system environment that can help integrate and retrieve various types of data in real-time by providing semantic interoperability among distributed heterogeneous information systems. The semantic interoperability is made possible by providing a TMDR(Topicmaps Metadata Registry), a set of ontologies. TMDR, which has been made by combining MDR(MetaData Registry) and TopicMaps and storing them in the database, is able to generate distributed query and provide efficient knowledge. MDR is a metadata management technique for distributed data management. TopicMaps is an ontology representation technique that takes into consideration the hierarchy and association for accessing knowledge data. We have created TMDR, a kind of ontology, that is fit for any system and able to detect and resolve semantic conflicts on the level of data and schema. With this system we propose a query-processing technique to integrate and access heterogeneous information sources. Unlike existing retrieval methods this makes possible efficient retrieval and reasoning by providing association focusing on subjects.

A Study on Initial Environment Construction and Query Processing for Distributed INGRES Database System (분산 INGRES 데이타 베이스 시스템을 위한 초기환경 구축과 질의어 처리에 관한 연구)

  • Sohn, Yong-Lak;An, Sun-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.640-643
    • /
    • 1988
  • This paper is concerned with distributed INGRES database system. The main motivation is to provide dynamic reconfiguration and global database consistency. Dynamic reconfiguration will provide proper initial environment to newly generated system. By use of transaction characteristic, database can be maintained in consistent state.

  • PDF

Real-Time Monitoring and Buffering Strategy of Moving Object Databases on Cluster-based Distributed Computing Architecture (클러스터 기반 분산 컴퓨팅 구조에서의 이동 객체 데이타베이스의 실시간 모니터링과 버퍼링 기법)

  • Kim, Sang-Woo;Jeon, Se-Gil;Park, Seung-Yong;Lee, Chung-Woo;Hwang, Jae-Il;Nah, Yun-Mook
    • Journal of Korea Spatial Information System Society
    • /
    • v.8 no.2 s.17
    • /
    • pp.75-89
    • /
    • 2006
  • LBS (Location-Based Service) systems have become a serious subject for research and development since recent rapid advances in wireless communication technologies and position measurement technologies such as global positioning system. The architecture named the GALIS (Gracefully Aging Location Information System) has been suggested which is a cluster-based distributed computing system architecture to overcome performance losses and to efficiently handle a large volume of data, at least millions. The GALIS consists of SLDS and LLDS. The SLDS manages current location information of moving objects and the LLDS manages past location information of moving objects. In this thesis, we implement a monitoring technique for the GALIS prototype, to allow dynamic load balancing among multiple computing nodes by keeping track of the load of each node in real-time during the location data management and spatio-temporal query processing. We also propose a buffering technique which efficiently manages the query results having overlapped query regions to improve query processing performance of the GALIS. The proposed scheme reduces query processing time by eliminating unnecessary query execution on the overlapped regions with the previous queries.

  • PDF

Energy Efficient Query Processing based on Multiple Query Optimization in Wireless Sensor Networks (무선 센서 네트워크에서 다중 질의 최적화 기법을 이용한 에너지 효율적인 질의 처리 기법)

  • Lee, Yu-Won;Chung, Eun-Ho;Haam, Deok-Min;Lee, Chung-Ho;Lee, Yong-Jun;Lee, Ki-Yong;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.8-21
    • /
    • 2009
  • A wireless sensor network is a computer network which consists of spatially distributed devices, called sensor nodes. In wireless sensor networks, energy efficiency is a key issue since sensor nodes must resides upon limited energy. To retrieve sensor information without dealing with the network issues, a sensor network is treated as conceptual database on which query can be requested. When multiple queries are requested for processing in a wireless sensor network, energy consumption can be significantly reduced if common partial results among similar queries can be effectively shared. In this paper, we propose an energy efficient multi-query processing technique based on the coverage relationship between multiple queries. When a new query is requested, our proposed technique derives an equivalent query from queries running at the moment, if it is derivable. Our technique first computes the set of running queries that may derive a partial result of the new query and then test if this set covers all the result of the new query attribute-wise and tuple-wise. If the result of the new query can be derived from the results of executing queries, the new query derives its result at the base station instead of being executed in the sensor network.

In-Memory Based Incremental Processing Method for Stream Query Processing in Big Data Environments (빅데이터 환경에서 스트림 질의 처리를 위한 인메모리 기반 점진적 처리 기법)

  • Bok, Kyoungsoo;Yook, Misun;Noh, Yeonwoo;Han, Jieun;Kim, Yeonwoo;Lim, Jongtae;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.163-173
    • /
    • 2016
  • Recently, massive amounts of stream data have been studied for distributed processing. In this paper, we propose an incremental stream data processing method based on in-memory in big data environments. The proposed method stores input data in a temporary queue and compare them with data in a master node. If the data is in the master node, the proposed method reuses the previous processing results located in the node chosen by the master node. If there are no previous results of data in the node, the proposed method processes the data and stores the result in a separate node. We also propose a job scheduling technique considering the load and performance of a node. In order to show the superiority of the proposed method, we compare it with the existing method in terms of query processing time. Our experimental results show that our method outperforms the existing method in terms of query processing time.

An Efficient Angular Space Partitioning Based Skyline Query Processing Using Sampling-Based Pruning (데이터 샘플링 기반 프루닝 기법을 도입한 효율적인 각도 기반 공간 분할 병렬 스카이라인 질의 처리 기법)

  • Choi, Woosung;Kim, Minseok;Diana, Gromyko;Chung, Jaehwa;Jung, Soonyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Given a multi-dimensional dataset of tuples, a skyline query returns a subset of tuples which are not 'dominated' by any other tuples. Skyline query is very useful in Big data analysis since it filters out uninteresting items. Much interest was devoted to the MapReduce-based parallel processing of skyline queries in large-scale distributed environment. There are three requirements to improve parallelism in MapReduced-based algorithms: (1) workload should be well balanced (2) avoid redundant computations (3) Optimize network communication cost. In this paper, we introduce MR-SEAP (MapReduce sample Skyline object Equality Angular Partitioning), an efficient angular space partitioning based skyline query processing using sampling-based pruning, which satisfies requirements above. We conduct an extensive experiment to evaluate MR-SEAP.

Improving Join Performance for SPARQL Query Processing in the Clouds (클라우드에서 SPARQL 질의 처리를 위한 조인 성능 향상)

  • Choi, Gyu-Jin;Son, Yun-Hee;Lee, Kyu-Chul
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.700-709
    • /
    • 2016
  • Recently, with the rapid growth of LOD (Linked Open Data) existing methods based on a single machine have limitation in performance. Existing solutions use distributed framework such as Mapreduce in order to improve the performance. However, the MapReduce framework for processing SPARQL queries involves multiple MapReduce jobs and additional costs incurred. In addition, the problem of unnecessary data processing arises. In this study, we proposed a method to reduce the number of MapReduce jobs during SPARQL query processing and join indexes based on Bitmap for minimizing the costs of processing unnecessary data.