One of the methods for integrating XML data in distributed environments is using XML view. User can query toward distributed local XML views by using global XQuery queries in XQuery which is a standard query language for searching XML data. The global XQuery queries naturally contain join operations because of integrating and searching distributed heterogeneous data. Since join operations are generally expensive for processing a query, its processing technique is very important for efficient processing of global XQuery queries. Therefore there are some studies on the efficient processing of join operations and one of these studies is that selects minimum join cost by estimating a join selectivity. In case of SQL, there are already some researches for estimating a join selectivity and join cost of global SQL queries. However we can not apply their methods for estimating the selectivity of join operations in SQL queries into XQuery queries because of the structural difference between relational data and XML data. Therefore this paper proposes a method for estimating a selectivity of join operations in XQuery queries using the information of XML views. Our contribution is three threefold. First, we define the difference point for estimating join selectivity between SQL and XQuery. Second, we estimate join selectivity in XQuery queries by referring XML views. Third, we evaluate our estimating method.
The sensor network is a wireless network of the sensor nodes which sensing, computation and communication ability. Each sensor nodes create the data items by sensor nodes above one. Like this feature, the sensor network is similar to distributed data base system. The sensor node of the sensor network is restricted from the power and the memory resources is the biggest weak point and is becoming the important research object. In this paper, We try to see efficient sensor data stream management method and efficient query processing method under the restricted sensor network environment.
Modern networks consisting of various heterogeneous equipment are often installed in a distributed manner. Thus the NETCONF standard was established to manage networks centrally and efficiently. In this paper, we present a method that integrates each NETCONF layer into a single system based on the results of previous studies. In the RPC Layer, an asynchronous communication channel and parallel processes are possible using multi-threading. In the Operation Layer, operational efficiency is increased by using a data group with dependencies between the equipment configuration data and by improving the data structure, enabling efficiently processing of XML queries even with multiple managers. The data modeling techniques and grouping methods in the Content Layer are presented in detail for interoperability between the Operation Layer and the Content Layer. Finally, the GUI program was implemented and its implementation is reported. We performed an experiment comparing the improved NETCONF with the standard NETCONF to measure factors, such as query processing ratio, query processing speed, and CPU utilization. The improved NETCONF demonstrated excellent query processing ratio and query processing speed, whereas the standard NETCONF had excellent CPU utilization.
Journal of the Korea Institute of Information and Communication Engineering
/
v.14
no.7
/
pp.1701-1707
/
2010
This study is intended for implementing the system environment that can help integrate and retrieve various types of data in real-time by providing semantic interoperability among distributed heterogeneous information systems. The semantic interoperability is made possible by providing a TMDR(Topicmaps Metadata Registry), a set of ontologies. TMDR, which has been made by combining MDR(MetaData Registry) and TopicMaps and storing them in the database, is able to generate distributed query and provide efficient knowledge. MDR is a metadata management technique for distributed data management. TopicMaps is an ontology representation technique that takes into consideration the hierarchy and association for accessing knowledge data. We have created TMDR, a kind of ontology, that is fit for any system and able to detect and resolve semantic conflicts on the level of data and schema. With this system we propose a query-processing technique to integrate and access heterogeneous information sources. Unlike existing retrieval methods this makes possible efficient retrieval and reasoning by providing association focusing on subjects.
This paper is concerned with distributed INGRES database system. The main motivation is to provide dynamic reconfiguration and global database consistency. Dynamic reconfiguration will provide proper initial environment to newly generated system. By use of transaction characteristic, database can be maintained in consistent state.
Kim, Sang-Woo;Jeon, Se-Gil;Park, Seung-Yong;Lee, Chung-Woo;Hwang, Jae-Il;Nah, Yun-Mook
Journal of Korea Spatial Information System Society
/
v.8
no.2
s.17
/
pp.75-89
/
2006
LBS (Location-Based Service) systems have become a serious subject for research and development since recent rapid advances in wireless communication technologies and position measurement technologies such as global positioning system. The architecture named the GALIS (Gracefully Aging Location Information System) has been suggested which is a cluster-based distributed computing system architecture to overcome performance losses and to efficiently handle a large volume of data, at least millions. The GALIS consists of SLDS and LLDS. The SLDS manages current location information of moving objects and the LLDS manages past location information of moving objects. In this thesis, we implement a monitoring technique for the GALIS prototype, to allow dynamic load balancing among multiple computing nodes by keeping track of the load of each node in real-time during the location data management and spatio-temporal query processing. We also propose a buffering technique which efficiently manages the query results having overlapped query regions to improve query processing performance of the GALIS. The proposed scheme reduces query processing time by eliminating unnecessary query execution on the overlapped regions with the previous queries.
A wireless sensor network is a computer network which consists of spatially distributed devices, called sensor nodes. In wireless sensor networks, energy efficiency is a key issue since sensor nodes must resides upon limited energy. To retrieve sensor information without dealing with the network issues, a sensor network is treated as conceptual database on which query can be requested. When multiple queries are requested for processing in a wireless sensor network, energy consumption can be significantly reduced if common partial results among similar queries can be effectively shared. In this paper, we propose an energy efficient multi-query processing technique based on the coverage relationship between multiple queries. When a new query is requested, our proposed technique derives an equivalent query from queries running at the moment, if it is derivable. Our technique first computes the set of running queries that may derive a partial result of the new query and then test if this set covers all the result of the new query attribute-wise and tuple-wise. If the result of the new query can be derived from the results of executing queries, the new query derives its result at the base station instead of being executed in the sensor network.
Recently, massive amounts of stream data have been studied for distributed processing. In this paper, we propose an incremental stream data processing method based on in-memory in big data environments. The proposed method stores input data in a temporary queue and compare them with data in a master node. If the data is in the master node, the proposed method reuses the previous processing results located in the node chosen by the master node. If there are no previous results of data in the node, the proposed method processes the data and stores the result in a separate node. We also propose a job scheduling technique considering the load and performance of a node. In order to show the superiority of the proposed method, we compare it with the existing method in terms of query processing time. Our experimental results show that our method outperforms the existing method in terms of query processing time.
KIPS Transactions on Software and Data Engineering
/
v.6
no.1
/
pp.1-8
/
2017
Given a multi-dimensional dataset of tuples, a skyline query returns a subset of tuples which are not 'dominated' by any other tuples. Skyline query is very useful in Big data analysis since it filters out uninteresting items. Much interest was devoted to the MapReduce-based parallel processing of skyline queries in large-scale distributed environment. There are three requirements to improve parallelism in MapReduced-based algorithms: (1) workload should be well balanced (2) avoid redundant computations (3) Optimize network communication cost. In this paper, we introduce MR-SEAP (MapReduce sample Skyline object Equality Angular Partitioning), an efficient angular space partitioning based skyline query processing using sampling-based pruning, which satisfies requirements above. We conduct an extensive experiment to evaluate MR-SEAP.
Recently, with the rapid growth of LOD (Linked Open Data) existing methods based on a single machine have limitation in performance. Existing solutions use distributed framework such as Mapreduce in order to improve the performance. However, the MapReduce framework for processing SPARQL queries involves multiple MapReduce jobs and additional costs incurred. In addition, the problem of unnecessary data processing arises. In this study, we proposed a method to reduce the number of MapReduce jobs during SPARQL query processing and join indexes based on Bitmap for minimizing the costs of processing unnecessary data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.