• 제목/요약/키워드: distributed optimal power flow

Search Result 38, Processing Time 0.028 seconds

Flow Analyses around Intake within Sump in a Pump Station (펌프장에서 Sump내 흡입구 주위의 유동해석)

  • Roh Hyung-Woon;Kim Jae-Soo;Suh Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.597-600
    • /
    • 2002
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank, is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, may introduce air into pump, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. Uneven flow distribution can also increase or decrease the power consumption with a change in total developed head. To avoid these sump problems pump station designers are considered intake structure dimensions, such as approaching upstream, baffle size, sump width, width of pump cell and so on. From this background, flow characteristics of intake within sump are Investigated numerically to obtain the optimal sump design data. The sump model is designed in accordance with HI code.

  • PDF

A Study on the Optimal Unit Commitment Algorithm for Electric Power Systems (전력계통의 최적 발전기기동정지계획 산법에 관한 연구)

  • 김준현;유인근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.220-229
    • /
    • 1985
  • This paper proposes a new optimal unit commitment algorithm for the rational operation of electric power systems. Especially, the algorithm is improved by considering transmission line capacity limits and load forecasting uncertainty with the consideration of the participation factors of each units, so that the method becomes more reliable and flexible one. The transmission losses are considered by using updated penalty factors obtained from the constant matrixes of the fast decoupled load flow method, the system loads are distributed at each buses, and the several necessary operational constraints are also considered for the purpose of presenting a more practicable scheme. Finally, the effectiveness of the proposed algorithm has been demonstrated by applying to the 23-bus model system.

  • PDF

An Efficient Distributed Parallel Processing in Optimal Power Flow (최적조류계산의 효율적인 분산병렬처리)

  • Kim, Bal-Ho;Kim, Jin-Ho;Heo, Don
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.434-437
    • /
    • 1999
  • 본 연구에서는 워크스테이션 상에서 최적조류계산의 효율적인 분산병렬처리 기법을 개발하였다. 본 연구의 결과를 실제로 2587개의 송전선을 포함하는 미국 ERCOT 계통에 대하여 사례 연구한 결과 성능이 뛰어남을 알 수 있었다. 본 연구는 최적 조류계산을 병렬 처리하는 일반적인 방식을 제시해 줄 수 있을 것이라 생각된다.

  • PDF

Constrained Multi-Area Dispatch Scheduling Algorithm with Regionally Distributed Optimal Power Flow Using Alternating Direction Method (ADM 기반 분산처리 최적조류계산을 이용한 다지역 제약급전계획 알고리즘)

  • Chung, Koo-Hyung;Kim, Bal-Ho;Lee, Jong-Joo;Kim, Hak-Man
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • This paper proposes a constrained multi-area dispatch scheduling algorithm applicable to interconnected power system operations. The dispatch scheduling formulated as an MIP problem can be efficiently computed by GBD algorithm. GBD guarantees adequate computation speed and solution convergence by reducing the dimension of the dispatch scheduling problem. In addition, the regional decomposition technique based on ADM is introduced to obtain efficient inter-temporal OPF solution. It can find the most economic dispatch schedule incorporating power transactions without each regional utility's private information open.

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

A study on Optimal Operation of Protection Coordination Devices Evaluation System in Distribution System with Distributed Sources (분산전원이 연계된 배전계통에 보호협조기기 평가시스템의 최적운용에 관한 연구)

  • Ji, Sungho;Song, Bangwoon;Kim, Byungki;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2971-2978
    • /
    • 2013
  • Recently, with the world-wide issues about global warming and CO2 reduction, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with the distribution systems. However, DGs can change the direction of the power flow from one-direction to bi-direction, and also change the direction and amount of fault current of existing distribution systems. Therefore, it may cause the critical problems on the power quality and protection coordination. This paper proposes an operation algorithm for bi-directional protection coordination using and apply it for the evaluation system for protection coordination. From the simulation results It is found that the proposed method is more effective and convenient than existing method.

Analysis of Customer Power Quality Characteristics Using PV Test Devices (태양광전원 계통연계시험장치에 의한 수용가 전력품질특성에 관한 연구)

  • Kim, Byungmok;Kim, Byungki;Park, Jeabum;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • Recently, new distributed power sources such as photovoltaic, wind power, fuel cell systems etc. are energetically interconnected and operated in the distribution feeders, as one of the national projects for alternative energy. When new power sources are considered to be interconnected to distribution systems, bi-directional power flow and interconnection conditions of new power sources may cause several power quality problems like voltage sag, voltage swell, harmonics, since new power sources can change typical characteristics of distribution systems. Under these situations, this paper deals with the analysis the power quality problems at primary and secondary feeders in distribution systems, when new power sources like photovoltaic (PV) systems are interconnected, by using the test devices for PV systems based on the LabVIEW S/W. This paper presents the test device which is consisted with model distribution system and model PV systems. By performing the simulation for power quality operation characteristic based on the test facilities, this paper presents the optimal countermeasures for power quality.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.