• Title/Summary/Keyword: distributed optical fiber

Search Result 141, Processing Time 0.027 seconds

Continuous deformation measurement for track based on distributed optical fiber sensor

  • He, Jianping;Li, Peigang;Zhang, Shihai
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • Railway tracks are the direct supporting structures of the trains, which are vulnerable to produce large deformation under the temperature stress or subgrade settlement. The health status of track is critical, and the track should be routinely monitored to improve safety, lower the risk of excess deformation and provide reliable maintenance strategy. In this paper, the distributed optical fiber sensor was proposed to monitor the continuous deformation of the track. In order to validate the feasibility of the monitoring method, two deformation monitoring tests on one steel rail model in laboratory and on one real railway tack in outdoor were conducted respectively. In the model test, the working conditions of simply supported beam and continuous beam in the rail model under several concentrated loads were set to simulate different stress conditions of the real rail, respectively. In order to evaluate the monitoring accuracy, one distributed optical fiber sensor and one fiber Bragg grating (FBG) sensor were installed on the lower surface of the rail model, the strain measured by FBG sensor and the strain calculated from FEA were taken as measurement references. The model test results show that the strain measured by distributed optical fiber sensor has a good agreement with those measured by FBG sensor and FEA. In the outdoor test, the real track suffered from displacement and temperature loads. The distributed optical fiber sensor installed on the rail can monitor the corresponding strain and temperature with a good accuracy.

Simulation of Distributed Optical Fiber Sensors Using Spatially-Selective Brillouin Scattering (공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 시뮬레이션)

  • Yun, Seung-Chul;Seo, Min-Sung;Park, Hee-Gap
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • We implement numerical simulations for the distributed optical fiber sensor system that uses the spatially-selective Brillouin scattering, by treating the superposition of the optical-frequency-modulated pump/probe waves in the time domain. We obtain temporal and spatial distributions of Brillouin gain for various cases. Simulations are applied to the case of concatenated optical fibers of different kinds and the case of distributed temperature along the fiber, which give reasonable results for the distributed sensor. The result of using a triangular wave instead of a sinusoidal one as a modulation waveform shows that the triangular wave modulation has an advantage in spatial resolution.

Quasi-Distributed Water Detection Sensor Based On a V-Grooved Single-Mode Optical Fiber Covered with Water-Soluble Index-Matched Medium

  • Kim, Dae Hyun;Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The V-grooved single-mode fiber in which a surface part of the core was removed was investigated as a quasi-distributed water detection sensor. In the normal state, the V-grooved region is filled and covered with a specific RI (Refractive Index)-matched medium, and the sensor experiences minimal optical loss. As water invades the V-grooved region, the material is dissolved and removed, and a considerable optical loss occurs owing to the large RI difference between the fiber core and water. The experimental results showed the feasibility of the device as a sensor element of the quasi-distributed water detection sensor system based on general optical time domain reflectometry (OTDR).

FEM Analysis of Distributed Optical Fiber Sensors for the Strain Transfer (표면부착된 분포형 광섬유 센서의 유한요소해석)

  • Kim, Sang-Hoon;Lee, Jung-Ju;Kwon, Il-Bum;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2001
  • Comparing with general optical fiber sensors performing localized measurement, distributed optical fiber sensors can measure along an optical fiber, and they have large measuring range. The surface-mounting method with epoxy adhesive is general in attaching optical fiber sensors to structures, This is also appliable to the structural integrity monitoring with Brillouin-scattering distributed optical fiber sensors. In this paper, Brillouin-scattering distributed optical fiber sensors, which are attached to the surface of a structure with epoxy adhesive, was verified with the finite element method. From the analysis results of strain transfer through the structure, optical fiber coating, cladding and core, the strain transfer rates were calculated. And the influence of the epoxy free-end was also studied.

  • PDF

Fiber-Optic Distributed Overheating Detection Sensor Using an Optical Time Domain Refrectometry (광시간영역 반사계를 이용한 분포형 광섬유 과열 감지 센서)

  • Kim, Dae Hyun;Kim, Kwang Taek
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • We proposed and demonstrated a distributed fiber-optic overheating detection sensor using optical time domain refrectometry. With increased of temperature the optical fiber is bended by a bi-metal and it result in optical leaky loss of the fiber. The sensor structure is designed in such a way that the signal of overheating is happen when the temperature exceeding a threshold temperature and the optical fiber is protected from excess bending.

Distributed optical fiber sensors for integrated monitoring of railway infrastructures

  • Minardo, Aldo;Coscetta, Agnese;Porcaro, Giuseppe;Giannetta, Daniele;Bernini, Romeo;Zeni, Luigi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.2
    • /
    • pp.173-182
    • /
    • 2014
  • We describe the application of a distributed optical fiber sensor based on stimulated Brillouin scattering, as an integrated system for safety monitoring of railway infrastructures. The strain distribution was measured statically and dynamically along 60 meters of rail track, as well as along a 3-m stone arch bridge. We show that, gluing an optical fiber along the rail track, traffic monitoring can be performed in order to identify the train passage over the instrumented sector and determine its running conditions. Furthermore, dynamic and static strain measurements on a rail bridge are reported, aimed to detect potential structural defects. The results indicate that distributed sensing technology represents a valuable tool in railway traffic and safety monitoring.

Crack detection study for hydraulic concrete using PPP-BOTDA

  • Huang, Xiaofei;Yang, Meng;Feng, Longlong;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • Effectively monitoring the concrete cracks is an urgent question to be solved in the structural safety monitoring while cracks in hydraulic concrete structures are ubiquitous. In this paper, two experiments are designed based on the measuring principle of Pulse-Pre pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) utilizing Brillouin optical fiber sensor to monitor concrete cracks. More specifically, "V" shaped optical fiber sensor is proposed to determine the position of the initial crack and the experiment illustrates that the concrete crack position can be located by the mutation position of optical fiber strain. Further, Brillouin distributed optical fiber sensor and preinstall cracks are set at different angles and loads until the optical fiber is fractured. Through the monitoring data, it can be concluded that the variation law of optical fiber strain can basically reflect the propagation trend of the cracks in hydraulic concrete structures.

Quasi-Distributed Temperature Sensor Based on a V-Grooved Single-Mode Optical Fiber Covered with Ethylene Vinyl Acetate

  • Kim, Kwang Taek;Jeong, Seong-Gab
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.229-233
    • /
    • 2014
  • In this study, a V-grooved single-mode fiber along with optical time domain reflectometry (OTDR) as a quasi-distributed temperature sensor was investigated. The external medium used to fill the V-groove affects the optical mode. The V-groove was filled with ethylene vinyl acetate (EVA) because its transmittance was sensitive to temperature. The experimental results showed that the optical loss of the sensor varies with temperature, and the sensitivity depends on the depth of the V-groove.

Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building (빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

Design of Distributed Fiber Optic Sensor Net for the Detection of External Sound Frequency (외부 음향 주파수 탐지를 위한 분포형 광섬유 센서망 설계)

  • 이종길
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.792-796
    • /
    • 2003
  • In this paper, to detect external sound frequency on the latticed structure, fiber optic sensor net using Sagnac interferometer was fabricated and tested. The latticed structure fabricated with dimension of 50cm in width and 50cm in height, the optical fiber, 50m in length, distributed and fixed on the latticed structure. Single mode fiber, a laser with 1,550nm in wavelength, 2${\times}$2 coupler were used. External sound signal applied to the fiber optic sensor net and the detected optical signals were compared and analyzed to the detected microphone signals against time and frequency domain. Based on the experimental results, fiber optic sensor net using Sagnac interferometer detected external sound frequency, effectively. This system can be expanded to the structural health monitoring system.

  • PDF