• Title/Summary/Keyword: distributed mobility support

Search Result 47, Processing Time 0.024 seconds

A Study of a Seamless Handover Support for WSN based Information Transmission in Structural Health Monitoring Systems

  • Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.174-184
    • /
    • 2018
  • The efficiency and safety of social-overhead capital (SOC) public infrastructures have become an eminent social concern. In this regard, a continuous structural health monitoring has been widely implemented to oversee the robustness of such public infrastructures for the safety of the public. This paper deals with the analysis of a distributed mobility management (DMM) support for wireless sensor network (WSN) based information transmission system. The partial DMM support separates the data and control plane infrastructures, wherein, the control plane is managed by a particular mobility management network entity, while the data plane is distributed by the mobility anchors. The system will be able to optimize the information transmission for a wireless structural health monitoring of SOC public infrastructures specifically designed for bridges, and thus, guarantees the safety of public commuters.

A Study on NEMO-partially DMM based E2E Seamless Data Integration Transmission Scheme in SOC Public Infrastructures

  • Ryu, Wonmo;Caytiles, Ronnie D.;Park, Byungjoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.33-41
    • /
    • 2020
  • Nowadays, distributed mobility management (DMM) approaches have been widely adopted to address the limitations of centralized architectural methods to support seamless data transmission schemes in wireless sensor networks. This paper deals with the end-to-end (E2E) integration of Network Mobility (NEMO) basic support protocol in distributed wireless sensor network systems in structural health and environmental monitoring of social overhead capital (SOC) public infrastructures such as bridges, national highways, tunnels, and railroads. The proposed scheme takes advantage of the features of both the NEMO basic support protocol and partially distributed network-based DMM framework in providing seamless data transmission and robust mobility support. The E2E seamless data transmission scheme allows mobile users to roam from fixed-point network access locations and mobile platforms (i.e., vehicles such as cars, buses, and trains) without disconnecting its current sessions (i.e., seamless handover).

Distributed CoAP Handover Using Distributed Mobility Agents in Internet-of-Things Networks

  • Choi, Sang-Il;Koh, Seok-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.37-42
    • /
    • 2017
  • The constrained application protocol (CoAP) can be used for remotely controlling various sensor devices in Internet of Things (IoT) networks. In CoAP, to support the handover of a mobile sensor device, service discovery and message transmission needs to be repeated, although doing so would increase the handover delay significantly. To address this limitation of CoAP, a centralized CoAP scheme has been proposed. However, it tends to result in performance degradation for an inter-domain handover case. In this letter, we propose a distributed CoAP handover scheme to support the inter-domain handover. In the proposed scheme, a distributed mobility agent (DMA) is used for managing the location of mobile sensors in a domain and performing handover control operations with its neighboring DMAs in a distributed manner. A performance comparison reveals that the proposed scheme offers a performance improvement of up to 29.5% in terms of the handover delay.

Analysis of a Decentralized Mobility Management Support for u-City Wireless Network Infrastructure

  • Caytiles, Ronnie D.;Park, Byungjoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • The number of mobile devices roaming into a ubiquitous city (u-city) continues to rise as wireless systems have been widely deployed. The number of mobile devices also varies with time, and they tend to frequently change their locations. In addition, the available wireless access networks may belong to different domains, administrations, management, and internet service providers (ISPs). A fusion of overlapping heterogeneous wireless access networks (e.g., WiMax, Wi-Fi, LTE, etc.) serves the u-city in order to reach different coverage. In this context, technical challenges arise in mobility management for heterogeneous networks to realize their potential coverage and capacity benefits. This paper deals with the analysis of a decentralized mobility management support for u-City wireless network infrastructure. This scheme takes advantage of the features of the fully-distributed model of networked-based mobility management protocol to alleviate and realize the ubiquitous requirements of a u-City.

Distributed Medium Access Control for N-Screen Multicast Services in Home Networks

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.567-572
    • /
    • 2016
  • N-screen is an emerging technology to support multimedia multicasting, content sharing and content mobility. N-screen service providers should obtain the technology that provides the highest quality content seamlessly. Distributed nature of WiMedia distributed-MAC protocol can provide full mobility support, and achieves seamless medium access method in contrast to IEEE 802.15.3. So, in this paper, WiMedia distributed-MAC protocol is adopted and an asynchronous multicast transmission (AMT) technology is proposed to enhance performance of seamless N-screen wireless service based on distributed-MAC. The ACK frame transmissions are not required for multicast transmissions. By using this property in AMT, if a device is a multicast receiver, its reserved time slots can be reserved by the other devices with 1-hop distance. Furthermore, each N-screen device broadcasts and shares the information including an order in asynchronous traffic reservations to reduce conflicts in determining the transmission order of asynchronous N-screen packets. Therefore, AMT scheme expands the number of time slots available and throughputs for multicast and asynchronous traffic reservations when comparing with the distributed-MAC standard system. N-screen communications based on distributed-MAC with the proposed AMT shows a new framework for realizing N-screen wireless service with the full content mobility.

Distributed Mobility Management Scheme for the Tactical Network (전술망을 위한 분산 이동성 관리 기법)

  • Kim, Yongsin;Sun, Kyoungjae;Kim, Younghan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1078-1087
    • /
    • 2014
  • In the conventional centralized mobility management schemes, it can lead to single points of failure, occurrence of a bottleneck, since all data and control are concentrated on the mobility anchor which is located in home network. In the current research of distributed mobility management, it is doing research into distributed mobility management which is supported by distributed mobility anchors. Such schemes do not consider a failure of the mobility anchor. However, it could be an issue under tactical environment since it occur non-service problem due to anchor movement, maintenance, failure, etc. In this paper, we proposed new DMM scheme named T-DMM(Tactical-Distributed Mobility Management) which can support handover even if mobility anchor breaks down. From the numerical analysis, we evaluate signaling cost and handover latency.

A Mobility Control Architecture Suppor ting Fast Handover for Future Internet Networks

  • Nguyen, Khanh-Huy;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1485-1491
    • /
    • 2012
  • In this paper, we address the problem of fast handover support for future internet networks. The current mobility support protocols, for example Proxy Mobile IPv6, follow a centralized architecture in which a mobility controller is used to manage intra-network handovers that gives rise to high handover latency. To handle this problem, we propose a novel distributed mobility control architecture in which gateways in the network can exchange user information with neighbour gateways to support intra-network handovers, the mobility controller is only needed in case of inter-network handovers. Simulation results show that our architecture reduce approximately 20% intra-network handover latency than Proxy Mobile IPv6.

Design and Comparative Performance Analysis of Fully Distributed Mobility Management Scheme on PMIPv6 (PMIPv6 기반의 완전 분산형 이동성 관리 기법의 설계 및 성능 비교 분석)

  • Lee, Han-Bin;Lee, Jong Hyup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.220-223
    • /
    • 2016
  • Explosive growth of smartphone-based mobile nodes has increased exponentially the mobile data traffic on the Internet. To reduce the traffic load on the network and to support the seamless mobility of the mobile nodes, the IETF and 3GPP have standardized a number of mobility management mechanisms. More recently, they are making an effort to find some schemes to distribute the networking systems that involve in the mobility management in order to assure the scalability and the reliability of the network. In IETF, DMM concept for the distributed mobility management on the Internet is being discussed. Specifically, the DMM can be classified into the partially distributed management and fully distributed management. In this paper, we propose a fully distributed mobility management scheme (FuDMM) on PMIPv6-based network by applying the extended NDP. We also present the performance of FuDMM using the comparative analysis with the existing ones.

  • PDF

Reservation Conflict-Free MAC Design for Mobile Wireless USB Devices with Distributed MAC

  • Joo, Yang-Ick;Kwon, Moon Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1212-1220
    • /
    • 2012
  • In this paper, a collision-free resource reservation scheme for WUSB (Wireless Universal Serial Bus) networks with WiMedia D-MAC (Distributed Medium Access Control). Since distributed characteristic of the WiMedia D-MAC supporting DRP (Distributed Reservation Protocol) scheme may cause lots of conflicts, overall performances of the WUSB with WiMedia D-MAC can be deteriorated. In addition, when we consider multi-hop environment, "mobile" hidden node problem due to mobility of WUSB devices can be happened, and it is a critical problem to mobile WUSB devices transceiving real-time QoS (Quality of Service) traffic. To tackle the problem, we propose a new DRP reservation mechanism to prevent DRP conflicts for multi-hop mobility support in WUSB networks with WiMedia D-MAC and show its improved performance via simulation results.

Relay Transmission Protocol for Mobility Support in WiMedia Distributed MAC Systems (WiMedia Distributed MAC 통신 시스템에서 이동성 지원을 위한 릴레이 통신 프로토콜)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.526-534
    • /
    • 2014
  • In this paper, for the WiMedia Distributed Medium Access Control (D-MAC) protocol based on UWB. performance degradation due to the Distributed Reservation Protocol (DRP) conflict problem caused by devices' mobility is analyzed. And a DRP relay protocol and a DRP conflict resolution (CR) are proposed to overcome the performance degradation at DRP conflicts. In order to give the loser device at DRP conflicts a chance to maintain resources, the proposed DRP relay protocol executed at each device helps the loser device reserve an indirect link maintaining the required resources via a relay node. Simulation results considering the mobile environment have indicated that the DRP relay combined with the CR prevent the throughput decrease even though mobility of devices increases.