• Title/Summary/Keyword: distributed localization

Search Result 151, Processing Time 0.033 seconds

A Collaborative and Predictive Localization Algorithm for Wireless Sensor Networks

  • Liu, Yuan;Chen, Junjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3480-3500
    • /
    • 2017
  • Accurate locating for the mobile target remains a challenge in various applications of wireless sensor networks (WSNs). Unfortunately, most of the typical localization algorithms perform well only in the WSN with densely distributed sensor nodes. The non-localizable problem is prone to happening when a target moves into the WSN with sparsely distributed sensor nodes. To solve this problem, we propose a collaborative and predictive localization algorithm (CPLA). The Gaussian mixture model (GMM) is introduced to predict the posterior trajectory for a mobile target by training its prior trajectory. In addition, the collaborative and predictive schemes are designed to solve the non-localizable problems in the two-anchor nodes locating, one-anchor node locating and non-anchor node locating situations. Simulation results prove that the CPLA exhibits higher localization accuracy than other tested predictive localization algorithms either in the WSN with sparsely distributed sensor nodes or in the WSN with densely distributed sensor nodes.

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.

Target Localization Using Geometry of Detected Sensors in Distributed Sensor Network (분산센서망에서 표적을 탐지한 센서의 기하학적 구조를 이용한 표적위치 추정)

  • Ryu, Chang Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • In active sonar field, a target detection and localization based on a distributed sensor network has been much studied for the underwater surveillance of the coast. Zhou et al. proposed a target localization method utilizing the positions of target-detected sensors in distributed sensor network which consists of detection-only sensors. In contrast with a conventional method, Zhou's method dose not require to estimate the propagation model parameters of detection signal. Also it needs the lower computational complexity, and to transmit less data between network nodes. However, it has large target localization error. So it has been modified for reducing localization error by Ryu. Modified Zhou's method has better estimation performance than Zhou's method, but still relatively large estimation error. In this paper, a target localization method based on modified Zhou's method is proposed for reducing the localization error. The proposed method utilizes the geometry of the positions of target-detected sensors and a line that represents the bearing of target, a line can be found by modified Zhou's method. This paper shows that the proposed method has better target position estimation performance than Zhou's and modified Zhou's method by computer simulations.

Iterative Target Localization Method for Distributed MIMO Radar System (반복적 연산을 이용하는 Distributed MIMO 레이다 시스템의 위치 추정 기법)

  • Shin, Hyuksoo;Chung, Young-Seek;Yang, Hoon-Gee;Kim, Jong-mann;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.819-824
    • /
    • 2017
  • This paper presents a target localization scheme for distributed Multi-input Multi-output(MIMO) radar system using ToA measurements obtained from multiple transmitter and receiver pairs. The proposed method can locate the target from an arbitrary initial point by iteratively finding the Taylor linear approximation equation. The simulation results show that proposed method achieves the better mean square error(MSE) performance than the existing target localization methods, and furthermore, attains Cramer-Rao Lower Bound(CRLB).

Improved Target Localization Using Line Fitting in Distributed Sensor Network of Detection-Only Sensor (탐지만 가능한 센서로 구성된 분산센서망에서 라인피팅을 이용한 표적위치 추정기법의 성능향상)

  • Ryu, Chang Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.362-369
    • /
    • 2012
  • Recently, a target detection based on a distributed sensor network has been much studied in active sonar. Zhou et al. proposed a target localization method using line fitting based on a distributed sensor network which consists of low complexity sensors that only report binary detection results. This method has three advantages relative to ML estimator. First, there is no need to estimate propagation model parameters. Second, the computation is simple. Third, it only use sensors with "detection", which implies less data to be collected by data processing center. However, this method has larger target localization error than the ML estimator. In this paper, a target localization method which modifies Zhou's method is proposed for reducing the localization error. The modified method shows the performance improvement that the target localization error is reduced by 40.7% to Zhou's method in the point of RMSE.

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

Theoretical analysis of the lightwave localization phenomenon on the random transmission line (part 2) : simulation (랜덤 선로상의 광 국재현상에 관한 해석(2) : 시뮬레이션)

  • 최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2003
  • Taking advantage of the probability function, we have analyzed the localization phenomenon of the solution of a propagating function under the condition that the propagation constants are randomly distributed. For example, we have investigated the localization phenomenon of the voltage wave for a transmission line in which the characteristic impedance is randomly distributed. We have confirmed that the localized solution is in existence on the random lossless transmission line. Even in the case that the voltage wave is impulsively excited by the current source, the voltage wave is localized. Because the light wave is seriously affected at the localized position in the lossy transmission line, we have determined that the light wave localization phenomena are generated by multi-reflection.

Experimental validation of a multi-level damage localization technique with distributed computation

  • Yan, Guirong;Guo, Weijun;Dyke, Shirley J.;Hackmann, Gregory;Lu, Chenyang
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.561-578
    • /
    • 2010
  • This study proposes a multi-level damage localization strategy to achieve an effective damage detection system for civil infrastructure systems based on wireless sensors. The proposed system is designed for use of distributed computation in a wireless sensor network (WSN). Modal identification is achieved using the frequency-domain decomposition (FDD) method and the peak-picking technique. The ASH (angle-between-string-and-horizon) and AS (axial strain) flexibility-based methods are employed for identifying and localizing damage. Fundamentally, the multi-level damage localization strategy does not activate all of the sensor nodes in the network at once. Instead, relatively few sensors are used to perform coarse-grained damage localization; if damage is detected, only those sensors in the potentially damaged regions are incrementally added to the network to perform finer-grained damage localization. In this way, many nodes are able to remain asleep for part or all of the multi-level interrogations, and thus the total energy cost is reduced considerably. In addition, a novel distributed computing strategy is also proposed to reduce the energy consumed in a sensor node, which distributes modal identification and damage detection tasks across a WSN and only allows small amount of useful intermediate results to be transmitted wirelessly. Computations are first performed on each leaf node independently, and the aggregated information is transmitted to one cluster head in each cluster. A second stage of computations are performed on each cluster head, and the identified operational deflection shapes and natural frequencies are transmitted to the base station of the WSN. The damage indicators are extracted at the base station. The proposed strategy yields a WSN-based SHM system which can effectively and automatically identify and localize damage, and is efficient in energy usage. The proposed strategy is validated using two illustrative numerical simulations and experimental validation is performed using a cantilevered beam.

Distributed Target Localization with Inaccurate Collaborative Sensors in Multipath Environments

  • Feng, Yuan;Yan, Qinsiwei;Tseng, Po-Hsuan;Hao, Ganlin;Wu, Nan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2299-2318
    • /
    • 2019
  • Location-aware networks are of great importance for both civil lives and military applications. Methods based on line-of-sight (LOS) measurements suffer sever performance loss in harsh environments such as indoor scenarios, where sensors can receive both LOS and non-line-of-sight (NLOS) measurements. In this paper, we propose a data association (DA) process based on the expectation maximization (EM) algorithm, which enables us to exploit multipath components (MPCs). By setting the mapping relationship between the measurements and scatters as a latent variable, coefficients of the Gaussian mixture model are estimated. Moreover, considering the misalignment of sensor position, we propose a space-alternating generalized expectation maximization (SAGE)-based algorithms to jointly update the target localization and sensor position information. A two dimensional (2-D) circularly symmetric Gaussian distribution is employed to approximate the probability density function of the sensor's position uncertainty via the minimization of the Kullback-Leibler divergence (KLD), which enables us to calculate the expectation step with low computational complexity. Moreover, a distributed implementation is derived based on the average consensus method to improve the scalability of the proposed algorithm. Simulation results demonstrate that the proposed centralized and distributed algorithms can perform close to the Monte Carlo-based method with much lower communication overhead and computational complexity.

Weighted Neighbor-node Distribution Localization for Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 이웃 노드 분포를 이용한 분산 위치인식 기법 및 구현)

  • Lee, Sang-Hoon;Lee, Ho-Jae;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.255-256
    • /
    • 2008
  • Distributed localization algorithms are required for large-scale wireless sensor network applications. In this paper, we introduce an efficient algorithm, termed weighted neighbor-node distribution localization(WNDL), which emphasizes simple refinement and low system-load for low-cost and low-rate wireless sensors. We inspect WNDL algorithm through MATLAB simulation.

  • PDF