• Title/Summary/Keyword: distributed fusion

Search Result 136, Processing Time 0.027 seconds

Design and Performance Analysis of Distributed Detection Systems with Two Passive Sonar Sensors (수동 소나 쌍을 이용한 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Do, Joo-Hwan;Song, Seung-Min;Hong, Sun-Mog;Kim, In-Ik;Oh, Won-Tchon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and two passive sonar nodes. AND rule and OR rule are employed as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under the constraint of a specified probability of false alarm. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between two sensor nodes affect the system detection performances.

Implementation of a Wireless Distributed Sensor Network Using Data Fusion Kalman-Consensus Filer (정보 융합 칼만-Consensus 필터를 이용한 분산 센서 네트워크 구현)

  • Song, Jae-Min;Ha, Chan-Sung;Whang, Ji-Hong;Kim, Tae-Hyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.243-248
    • /
    • 2013
  • In wireless sensor networks, consensus algorithms for dynamic systems may flexibly usable for their data fusion of a sensor network. In this paper, a distributed data fusion filter is implemented using an average consensus based on distributed sensor data, which is composed of some sensor nodes and a sink node to track the mean values of n sensors' data. The consensus filter resolve the problem of data fusion by a distribution Kalman filtering scheme. We showed that the consensus filter has an optimal convergence to decrease of noise propagation and fast tracking ability for input signals. In order to verify for the results of consensus filtering, we showed the output signals of sensor nodes and their filtering results, and then showed the result of the combined signal and the consensus filtering using zeegbee communication.

Implementation of a Real-time Data fusion Algorithm for Flight Test Computer (비행시험통제컴퓨터용 실시간 데이터 융합 알고리듬의 구현)

  • Lee, Yong-Jae;Won, Jong-Hoon;Lee, Ja-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.24-31
    • /
    • 2005
  • This paper presents an implementation of a real-time multi-sensor data fusion algorithm for Flight Test Computer. The sensor data consist of positional information of the target from a radar, a GPS receiver and an INS. The data fusion algorithm is designed by the 21st order distributed Kalman Filter which is based on the PVA model with sensor bias states. A fault detection and correction logics are included in the algorithm for bad measurements and sensor faults. The statistical parameters for the states are obtained from Monte Carlo simulations and covariance analysis using test tracking data. The designed filter is verified by using real data both in post processing and real-time processing.

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

A Multi Radar Fusion Algorithm for Reliable Maneuvering Target Tracking (신뢰성 있는 기동 항적 추적을 위한 다중 레이더 융합 알고리즘)

  • Cho, Tae-Hwan;Lee, Chang-Ho;Kim, Jin-Wook;Won, In-Su;Jo, Yun-Hyun;Park, Hyo-Dal;Choi, Sang-Bang
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • Data Fusion algorithm is essential in Target Detection using radar, and it has more reliability. In this paper, Multi Radar Fusion algorithm using IMM(Interacting Multiple Model) filter is suggested. This well-known IMM filter has better performance than Kalman filter has. In this simulation, Distributed Data Fusion process was applied, and three sub-filters and one main filter were employed. In addition, this simulation was evaluated by virtual radar data which include constant velocity, constant accelerate, turn rate. The result of an evaluation shows better performance in the maneuvering section of aircraft.

Cluster-Based Quantization and Estimation for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.215-221
    • /
    • 2016
  • We consider a design of a combined quantizer and estimator for distributed systems wherein each node quantizes its measurement without any communication among the nodes and transmits it to a fusion node for estimation. Noting that the quantization partitions minimizing the estimation error are not independently encoded at nodes, we focus on the parameter regions created by the partitions and propose a cluster-based quantization algorithm that iteratively finds a given number of clusters of parameter regions with each region being closer to the corresponding codeword than to the other codewords. We introduce a new metric to determine the distance between codewords and parameter regions. We also discuss that the fusion node can perform an efficient estimation by finding the intersection of the clusters sent from the nodes. We demonstrate through experiments that the proposed design achieves a significant performance gain with a low complexity as compared to the previous designs.

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Two Passive Sonar Sensors (수동 소나 쌍을 이용한 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Do, Joo-Hwan;Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.139-147
    • /
    • 2009
  • In this paper, optimum design of energy-aware distributed detection is considered for a parallel sensor network system consisting of a fusion center and two passive sonar nodes. AND rule and OR rule are employed as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, an energy constraint, and the distance between two sensor nodes affect the system detection performances.

Collection Fusion Algorithm in Distributed Multimedia Databases (분산 멀티미디어 데이터베이스에 대한 수집 융합 알고리즘)

  • Kim, Deok-Hwan;Lee, Ju-Hong;Lee, Seok-Lyong;Chung, Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.406-417
    • /
    • 2001
  • With the advances in multimedia databases on the World Wide Web, it becomes more important to provide users with the search capability of distributed multimedia data. While there have been many studies about the database selection and the collection fusion for text databases. The multimedia databases on the Web have autonomous and heterogeneous properties and they use mainly the content based retrieval. The collection fusion problem of multimedia databases is concerned with the merging of results retrieved by content based retrieval from heterogeneous multimedia databases on the Web. This problem is crucial for the search in distributed multimedia databases, however, it has not been studied yet. This paper provides novel algorithms for processing the collection fusion of heterogeneous multimedia databases on the Web. We propose two heuristic algorithms for estimating the number of objects to be retrieved from local databases and an algorithm using the linear regression. Extensive experiments show the effectiveness and efficiency of these algorithms. These algorithms can provide the basis for the distributed content based retrieval algorithms for multimedia databases on the Web.

  • PDF

Performance Evaluation of Decision Fusion Rules of Wireless Sensor Networks in Generalized Gaussian Noise (Generalized Gaussian Noise에서의 무선센서 네트워크의 Decision Fusion Rule의 성능 분석에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • Fusion of decisions from multiple distributed sensor nodes is studied in this work. Based on the canonical parallel fusion model, we derive the optimal likelihood ratio based fusion rule with the assumptions of the generalized Gaussian noise model and the arbitrary fading channel. This optimal fusion rule, however, requires the complete knowledge of the channels and the detection performance of local sensor nodes. To mitigate these requirements and to provide near optimum performance, we derive suboptimum fusion rules by using high and low signal-to-noise ratio (SNR) approximations to the optimal fusion rule. Performance evaluation is conducted through simulations.

  • PDF

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.