• Title/Summary/Keyword: distributed fusion

Search Result 136, Processing Time 0.032 seconds

Distributed Fusion Moving Average Prediction for Linear Stochastic Systems

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • This paper is concerned with distributed fusion moving average prediction for continuous-time linear stochastic systems with multiple sensors. A distributed fusion with the weighted sum structure is applied to the optimal local moving average predictors. The distributed fusion prediction algorithm represents the optimal linear fusion by weighting matrices under the minimum mean square criterion. The derivation of equations for error cross-covariances between the local predictors is the key of this paper. Example demonstrates effectiveness of the distributed fusion moving average predictor.

Distributed Fusion Estimation for Sensor Network

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2019
  • In this paper, we propose a distributed fusion estimation for sensor networks using a receding horizon strategy. Communication channels were modelled as Markov jump systems, and a posterior probability distribution for communication channel characteristics was calculated and incorporated into the filter to allow distributed fusion estimation to handle path loss observation situations automatically. To implement distributed fusion estimation, a Kalman-Consensus filter was then used to obtain the average consensus, based on the estimates of sensors randomly distributed across sensor networks. The advantages of the proposed algorithms were then verified using a large-scale sensor network example.

Bayesian Fusion of Confidence Measures for Confidence Scoring (베이시안 신뢰도 융합을 이용한 신뢰도 측정)

  • 김태윤;고한석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.410-419
    • /
    • 2004
  • In this paper. we propose a method of confidence measure fusion under Bayesian framework for speech recognition. Centralized and distributed schemes are considered for confidence measure fusion. Centralized fusion is feature level fusion which combines the values of individual confidence scores and makes a final decision. In contrast. distributed fusion is decision level fusion which combines the individual decision makings made by each individual confidence measuring method. Optimal Bayesian fusion rules for centralized and distributed cases are presented. In isolated word Out-of-Vocabulary (OOV) rejection experiments. centralized Bayesian fusion shows over 13% relative equal error rate (EER) reduction compared with the individual confidence measure methods. In contrast. the distributed Bayesian fusion shows no significant performance increase.

Improving the Distributed Data Fusion Ability of the JDL Data Fusion Model (JDL 자료융합 모델의 분산 자료융합 능력 개선)

  • Park, Gyu-Dong;Byun, Young-Tae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.147-154
    • /
    • 2012
  • In this paper, we revise the JDL data fusion model to have an ability of distributed data fusion(DDF). Data fusion is a function that produces valuable information using data from multiple sources. After the network centric warfare concept was introduced, the data fusion was required to be expanded to DDF. We identify the data transfer and control between nodes is the core function of DDF. The previous data fusion models can not be used for DDF because they don't include that function. Therefore, we revise the previous JDL data fusion model by adding the core function of DDF and propose this new model as a model for DDF. We show that our model is adequate and useful for DDF by using several examples.

Sliding Window Filtering for Ground Moving Targets with Cross-Correlated Sensor Noises

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.146-151
    • /
    • 2019
  • This paper reports a sliding window filtering approach for ground moving targets with cross-correlated sensor noise and uncertainty. In addition, the effect of uncertain parameters during a tracking error on the model performance is considered. A distributed fusion sliding window filter is also proposed. The distributed fusion filtering algorithm represents the optimal linear combination of local filters under the minimum mean-square error criterion. The derivation of the error cross-covariances between the local sliding window filters is the key to the proposed method. Simulation results of the motion of the ground moving target a demonstrate high accuracy and computational efficiency of the distributed fusion sliding window filter.

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors (다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

Performance Evaluation of Track-to-track Association and fusion in Distributed Multiple Radar Tracking (다중레이다 분산형 추적의 항적연관 및 융합 성능정가)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.38-46
    • /
    • 2008
  • A distributed system for tracking multiple targets with a pair of multifunction radars is proposed and implemented. The system performs track-to-track association and track-to-track fusion at the fusion center to form fused tracks. The association and fusion are performed using target state information linked via communication nodes from a radar at a remote location. Many factors can affect the track-to-track association and fusion performances. They include delays in data transmission buffer of the remote radar, the error in estimating time-stamp of the remote radar, and the gating in track-to-track association. The effects on association and fusion performances due to these factors are investigated through extensive numerical simulations.

A Data Fusion Algorithm of the Nonlinear System Based on Filtering Step By Step

  • Wen Cheng-Lin;Ge Quan-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.165-171
    • /
    • 2006
  • This paper proposes a data fusion algorithm of nonlinear multi sensor dynamic systems of synchronous sampling based on filtering step by step. Firstly, the object state variable at the next time index can be predicted by the previous global information with the systems, then the predicted estimation can be updated in turn by use of the extended Kalman filter when all of the observations aiming at the target state variable arrive. Finally a fusion estimation of the object state variable is obtained based on the system global information. Synchronously, we formulate the new algorithm and compare its performances with those of the traditional nonlinear centralized and distributed data fusion algorithms by the indexes that include the computational complexity, data communicational burden, time delay and estimation accuracy, etc.. These compared results indicate that the performance from the new algorithm is superior to the performances from the two traditional nonlinear data fusion algorithms.

Modeling and Design of a Distributed Detection System Based on Active Sonar Sensor Networks (능동 소나망 분산탐지 체계의 모델링 및 설계)

  • Choi, Won-Yong;Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.123-131
    • /
    • 2011
  • In this paper, modeling and design of a distributed detection system are considered for an active sonar sensor network. The sensor network has a parallel configuration and it consists of a fusion center and a set of receiver nodes. A system with two receiver nodes is considered to investigate a theoretical aspect of design. To be specific, AND rule and OR rule are considered as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is obtained that maximizes the probability of detection given probability of false alarm. Numerical experiments were also performed to investigate the detection characteristics of a distributed detection system with multiple sensor nodes. The experimental results show how signal strength, false alarm probability, and the distance between nodes in a sensor field affect the system detection performances.

A Survey on Track Fusion for Radar Target Tracking (레이다 항적융합 연구의 최근 동향)

  • Choi, Won-Yong;Hong, Sun-Mog;Lee, Dong-Gwan;Jung, Jae-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An architecture for multiple radar tracking systems can be broadly categorized according to the methods in which the tracking functions are performed : central-level tracking and distributed tracking. In the central-level tracking, target tracking is performed using observations from all radar systems. This architecture provides optimal solution to target tracking. In distributed tracking, tracking is performed at each radar system and the composite track information is formed through track fusion integrating multiple radar-level tracks. Track-to-track fusion and track-to-track association are required to perform in this architecture. In this paper, issues and recent research on the two tracking architectures are surveyed.