• Title/Summary/Keyword: distributed evolutionary algorithm

Search Result 24, Processing Time 0.029 seconds

The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept (계승적 나이개념을 가진 다목적 진화알고리즘 개발)

  • 강영훈;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.689-694
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithm such as SPEA. NSGA-II, PESA, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, “inherited age” and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept (계승적 나이개념을 가진 다목적 진화알고리즘 개발)

  • Kang, Young-Hoon;Zeungnam Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.229-232
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithms, e,g, SPEA, NSGA-ll, PESA, and SPEA2, have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, "inherited age" and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in Distributed Systems

  • Lee, Seong-Hoon
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.13-18
    • /
    • 2008
  • A load sharing algorithm is one of the important factors in computer system. In sender-initiated load sharing algorithms, when a distributed system becomes to heavy system load, it is difficult to find a suitable receiver because most processors have additional tasks to send. The sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Because of these unnecessary request messages it results in inefficient communications, low cpu utilization, and low system throughput. To solve these problems, we propose a self-adjusting evolutionary algorithm for improved sender-initiated load sharing in distributed systems. This algorithm decreases response time and increases acceptance rate. Compared with the conventional sender-initiated load sharing algorithms, we show that the proposed algorithm performs better.

Two-Phase Distributed Evolutionary algorithm with Inherited Age Concept

  • Kang, Young-Hoon;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.4-101
    • /
    • 2001
  • Evolutionary algorithm has been receiving a remarkable attention due to the model-free and population-based parallel search attributes and much successful results are coming out. However, there are some problems in most of the evolutionary algorithms. The critical one is that it takes much time or large generations to search the global optimum in case of the objective function with multimodality. Another problem is that it usually cannot search all the local optima because it pays great attention to the search of the global optimum. In addition, if the objective function has several global optima, it may be very difficult to search all the global optima due to the global characteristics of the selection methods. To cope with these problems, at first we propose a preprocessing process, grid-filtering algorithm(GFA), and propose a new distributed evolutionary ...

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

Distributed Database Design using Evolutionary Algorithms

  • Tosun, Umut
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.430-435
    • /
    • 2014
  • The performance of a distributed database system depends particularly on the site-allocation of the fragments. Queries access different fragments among the sites, and an originating site exists for each query. A data allocation algorithm should distribute the fragments to minimize the transfer and settlement costs of executing the query plans. The primary cost for a data allocation algorithm is the cost of the data transmission across the network. The data allocation problem in a distributed database is NP-complete, and scalable evolutionary algorithms were developed to minimize the execution costs of the query plans. In this paper, quadratic assignment problem heuristics were designed and implemented for the data allocation problem. The proposed algorithms find near-optimal solutions for the data allocation problem. In addition to the fast ant colony, robust tabu search, and genetic algorithm solutions to this problem, we propose a fast and scalable hybrid genetic multi-start tabu search algorithm that outperforms the other well-known heuristics in terms of execution time and solution quality.

Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions (균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘)

  • Jang Su-Hyun;Yoon Byungjoo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.841-848
    • /
    • 2004
  • Evolutionary a1gorithms are well-suited for multi-objective optimization problems involving several, often conflicting objectives. Pareto-based evolutionary algorithms, in particular, have shown better performance than other multi-objective evolutionary algorithms in comparison. However, generalized evolutionary multi-objective optimization algorithms have a weak point, in which the distribution of solutions are not uni-formly distributed onto Pareto optimal front. In this paper, we propose an evolutionary a1gorithm for multi-objective optimization which uses seed individuals in order to overcome weakness of algorithms Published. Seed individual means a solution which is not located in the crowded region on Pareto front. And the idea of our algorithm uses seed individuals for reproducing individuals for next generation. Thus, proposed a1go-rithm takes advantage of local searching effect because new individuals are produced near the seed individual with high probability, and is able to produce comparatively uniform distributed pareto optimal solutions. Simulation results on five testbed problems show that the proposed algo-rithm could produce uniform distributed solutions onto pareto optimal front, and is able to show better convergence compared to NSGA-II on all testbed problems except multi-modal problem.

Multi-objective optimization using a two-leveled symbiotic evolutionary algorithm (2 계층 공생 진화알고리듬을 이용한 다목적 최적화)

  • Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • This paper deals with multi-objective optimization problem of finding a set of well-distributed solutions close to the true Pareto optimal solutions. In this paper, we present a two-leveled symbiotic evolutionary algorithm to efficiently solve the problem. Most of the existing multi-objective evolutionary algorithms (MOEAs) operate one population that consists of individuals representing the complete solution to the problem. The proposed algorithm maintains several populations, each of which represents a partial solution to the entire problem, and has a structure with two levels. The parallel search and the structure are intended to improve the capability of searching diverse and good solutions. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The experimental results confirm the effectiveness of the proposed algorithm.

  • PDF

A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives (다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘)

  • Kim, Yeo-Keun;Lee, Sang-Seon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.3
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.

A Symbiotic Evolutionary Algorithm for Multi-objective Optimization (다목적 최적화를 위한 공생 진화알고리듬)

  • Shin, Kyoung-Seok;Kim, Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.1
    • /
    • pp.77-91
    • /
    • 2007
  • In this paper, we present a symbiotic evolutionary algorithm for multi-objective optimization. The goal in multi-objective evolutionary algorithms (MOEAs) is to find a set of well-distributed solutions close to the true Pareto optimal solutions. Most of the existing MOEAs operate one population that consists of individuals representing the entire solution to the problem. The proposed algorithm has a two-leveled structure. The structure is intended to improve the capability of searching diverse and food solutions. At the lower level there exist several populations, each of which represents a partial solution to the entire problem, and at the upper level there is one population whose individuals represent the entire solutions to the problem. The parallel search with partial solutions at the lower level and the Integrated search with entire solutions at the upper level are carried out simultaneously. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The optimization problems with continuous variables and discrete variables are used as test-bed problems. The experimental results confirm the effectiveness of the proposed algorithm.