• Title/Summary/Keyword: distributed damage

Search Result 389, Processing Time 0.033 seconds

A Histochemical Study of the periodontal Ligament Fibers in Trauma from Occlusion (실험적 외상성교합시 치근막섬유의 조직화학적 관찰)

  • Kim, Woo-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.29-34
    • /
    • 1969
  • Occlusal force is a critical factor affecting the condition and structure of the periodontium. When the occlusal forces exceed the physiologic adaptive capacity of the tissues, tissue damage ensues. Such damage is referred to as trauma from occlusion. Excessive pressure causes compression, degeneration and realignment of the periodontal ligament fibers so that they are paralleled perpendicular to the tooth and bone. By inducing excessive occlusal forces with a high amalgam filling on rat's molar, the author observed histologic alterations of the periodontal ligament fibers by means of Hematoxylin-eosin, Van Gieson and Aldenyde fuchsin stainings. The results of the study were observed as follows: 1) The excessive occlusal forces altered arrangement of the collagenous fibers. 2) The arrangement of the oblique fibers showed appreciable differences between the control group and the group subjected to 10 days experimental trauma from occlusion. 3) The realignment of the transseptal fibers was not found. 4) The arrangement of the oblique fibers after 15 days of trauma from occusion was similar to that of 10 days experimental group. 5) The oxytalan fibers were more abundant at the cementum rather than at the alveolar bone. 6) The excessive occlusal forces produced funnel-shaped widening of the oxytalan fibers, which followed wavy course. 7) The oxytalan fibers appeared to be distributed mainly around the middle third of the root rather than that of the apical third of the root during the experimental trauma from occlusion.

  • PDF

Localized Necking in a Round Tensile Bar for a HCP Material Considering Tension-compression Asymmetry in Plastic Flow (소성 비대칭성을 갖는 HCP 소재의 국부변형 및 네킹해석)

  • Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.285-290
    • /
    • 2012
  • In spite of progress in predicting ductile failure, the development of a macroscopic yield criterion to describe damage evolution in HCP (hexagonal close-packed) materials remains a challenge. HCP materials display strength differential effects (i.e., different behavior in tension versus compression) in their plastic response due to twinning. Cazacu and Stewart(2009) developed an analytical yield criterion for porous material containing randomly distributed spherical voids in an isotropic, incompressible matrix that shows tension-compression asymmetry. The goal of the calculations in this paper is to investigate the effect of the tension-compression asymmetry on necking induced by void nucleation, evolution and consolidation. In order to investigate the effect of the tension-compression asymmetry of the matrix on necking and fracture initiation, three isotropic materials A, B, and C were examined with different ratios of tension-compression asymmetry. The various types of material had BCC, FCC, and HCP crystal structures, respectively. The ratio between tension and compression in plastic flow significantly influences the fracture shape produced by damage propagation as well as affecting the localized neck.

The Immediate Effects of Graston Instrument-Assisted Soft-Tissue Mobilization and Self-Stretching on the Muscular Properties of the Gastrocnemius in Athletes

  • Kang, Ho-Seong;Lee, Jung-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • PURPOSE: This study examined the immediate effects of Graston instrument-assisted soft-tissue mobilization (GIASTM) and self-stretching on the muscular properties of the gastrocnemius in athletes. METHODS: Thirty subjects (All in their 20 s) were distributed randomly and evenly into two groups of 15 each: GIASTM and stretching. The subjects had no history of gastrocnemius damage in the previous three months. The muscle tone, stiffness, elasticity, and mechanical stress relaxation time (MSRT) of the gastrocnemius were blind-tested. RESULTS: The GIASTM group showed significant changes in all categories, while only MSRT changed significantly in the self-stretching group after intervention. A comparison of the two groups revealed significant differences in stiffness, elasticity, and MSRT (Time required for the muscle to recover after distortion after intervention in the GIASTM group. CONCLUSION: In this study, significant decreases in muscle tone and stiffness, as well as significant increases in elasticity, were observed in the gastrocnemius of the GIASTM group. On the other hand, sSelf-stretching showed significant differences in MSRT. Therefore, GIASTM is more effective in the recovery of the gastrocnemius muscle from fatigue than self-stretching. This study suggests that GIASTM can help prevent damage to the gastrocnemius in athletes and contribute to their training and rehabilitation programs.

Simulation-based Worm Damage Assessment on ATCIS (시뮬레이션 기반 육군전술지휘정보체계에 대한 웜 피해평가)

  • Kim, Gi-Hwan;Kim, Wan-Joo;Lee, Soo-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2007
  • The army developed the ATCIS(Army Tactical Command Information System) for the battlefield information system with share the command control information through the realtime. The using the public key and the encryption equipment in the ATCIS is enough to the confidentiality, integrity. but, it is vulnerable about the availability with the zero day attack. In this paper, we implement the worm propagation simulation on the ATCIS infrastructure through the modelling on the ATCIS operation environment. We propose the countermeasures based on the results from the simulation.

Development of Radiopharmaceutical DW-166HC for Anticancer drug

  • Man, Ryu-Jei
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1999.04a
    • /
    • pp.53-61
    • /
    • 1999
  • Radiation therapy has been used for the cancer treatment and radiation synovectomy$\^$1-3)/. There are two kinds of radiation therapy; the external radiation therapy and the internal radiation therapy. Hitherto, the external radiation therapy has been widely used, but for the lack of its selectivity it requires strong radiation dose and causes the irritation and damage of the normal tissue or organ. Therefore many researchers give their interests to the internal radiation therapy in which the radioactive materials are injected directly into the target organ or tissue. Many ${\beta}$-emitting radionuclides have been studied for the application of the internal radiation theraily. Among them, Holmium-166 has the many beneficial physical characteristics for the internal radiation therapy such as appropriate half life (26.8hr), high ${\beta}$ energy (max. 1.85 MeV(51%), 1.77 MeV (48%), mean 0.67MeV), and low ${\gamma}$ energy (0.081MeV) easily detected by ${\gamma}$-camera. In the internal radiation therapy, the administered radioactive materials should be retained in the target long enough to increase the therapeutic effects and avoid the damage in the normal tissue or organ. For this purpose, radionuclides are used as complex form with carriers. Carriers should have a high affinity with radionuclides in vivo and in vitro, so the complex can be evenly distributed in the lesion but can not be leaked out from the lesion.

  • PDF

Evaluation of apoptosis after ionizing radiation in feeding and starving rats

  • Lee, Jae-Hyun;Cho, Kyung-Ja;Hong, Seok-Il;Park, Min-Kyung
    • Korean Journal of Veterinary Pathology
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 1998
  • It has been known that $\gamma$-irradiation usually induces cell death in regenerating stem cell in normal tissues like skin, intestine and hematopoietic organ. The experiment were carried out to evaluate the early response of radiation injury in radiosensitive and intermediate radiosensitive tissues in feeding and starving rats with the doses of 3.5 and 7.0 Gy. The results of the study showed that the histological phenomenon was apoptosis in the doses of the radiation as the early response of tissue injury. Apoptosis were showed organ-specific and cellular specific responses suggesting that the selection of apoptosis be exactly focused on highly renewal organs and cells. It was interesting that the rats starved for 72 hours prior to irradiation induced less apoptosis in liver than fed rats. As for cellular responses it appeared that apoptotic cells were mostly distributed in ductal or periportal cells in liver of feeding rats unlikely in liver of Starving rots which showed no difference in zonal distribution. In salivary gland apoptotic cells in fed rats were highly induced in intercalating and ductal cell population than in acinar cell population although unlikely in starved rats. This study showed the value of apoptosis using the detection system of TUNEL for evaluating cellular damage after radiation injury and the diminished effect of starvation on cell damage after ionizing irradiation.

  • PDF

A Study on Fatigue Durability through the Structural Analysis of Strut Bar (스트럿 바의 구조 해석을 통한 피로 내구성에 관한 연구)

  • Han, Moonsik;Cho, Jaeung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.504-511
    • /
    • 2016
  • This study investigates the durability of strut bar at car through structural and fatigue analyses. In this study, there are model 1 and model 2 as the analysis subjects. Model 1 is the existed one and model 2 is the improved one added with the reinforced part. Model 1 has the maximum equivalent stress of 165.11 MPa shown intensively at the welding part between the bracket and the bar. This stress is distributed over at the part of model 2 reinforced with this part. In case of fatigue analysis, there are three kinds of fatigue load as SAE bracket history, SAE transmission and sample history. The maximum fatigue life at SAE bracket history among three kinds of fatigue loads has the least value of $3.3693{\times}10^5$ cycles. The maximum fatigue life of model 2 becomes longer than that of model 1. As model 2 has the fatigue damage less than model 1, model 2 has the safety than model 1. As the fatigue durability about the configuration of strut bar is analyzed, it is thought to apply this study result into the real part effectively.

A Structural Analysis on the Influence of Multi-Cultural Families in Psychological Inadequacy for Youth

  • JUNG, Myung-Hee
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.2
    • /
    • pp.239-246
    • /
    • 2019
  • Teenagers in multicultural families are more prone to depression and problem behaviors caused by violence such as bullying in schools due to their appearance, language presentation skills, and poor learning abilities compared to teenagers in general families. This study is meaningful in that it provides basic information for prevention measures in intervening with damage caused by school violence such as depression, anxiety, suicidal impulses and emotional and social. For this purpose, a survey of 300 elementary school students from 4 to 6 grade, junior high school, and high school students was conducted. A total of 400 questionnaires were distributed and of thos e 385 were used for the final analysis. The results of the study are as follows. First, the psychological factors of suicidal ideation were higher in the victimized group than school violence. Second, there was a significant difference in the relationship between emotional - social isolation and school violence experience. Third, there was a significant difference in the relationship between experience of suicide ideation and depression as well as anxiety of emotional - social isolation with psychological maladjustment. In conclusion, we plan to find ways to stabilize the multicultural society by providing prevention and protection measures against school violence.

Influence of strong ground motion duration on reinforced concrete walls

  • Flores, Camilo;Bazaez, Ramiro;Lopez, Alvaro
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.477-487
    • /
    • 2021
  • This study focuses on the influence of strong ground motion duration on the response and collapse probability of reinforced concrete walls with a predominant response in flexure. Walls with different height and mass were used to account for a broad spectrum of configurations and fundamental periods. The walls were designed following the specifications of the Chilean design code. Non-linear models of the reinforced concrete walls using a distributed plasticity approach were performed in OpenSees and calibrated with experimental data. Special attention was put on modeling strength and stiffness degradation. The effect of duration was isolated using spectrally equivalent ground motions of long and short duration. In order to assess the behavior of the RC shear walls, incremental dynamic analyses (IDA) were performed, and fragility curves were obtained using cumulative and non-cumulative engineering demand parameters. The spectral acceleration at the fundamental period of the wall was used as the intensity measure (IM) for the IDAs. The results show that the long duration ground motion set decreases the average collapse capacity in walls of medium and long periods compared to the results using the short duration set. Also, it was found that a lower median intensity is required to achieve moderate damage states in the same medium and long period wall models. Finally, strength and stiffness degradation are important modelling parameters and if they are not included, the damage in reinforced concrete walls may be greatly underestimated.

Populus tomentiglandulosa protects against amyloid-beta25-35-induced neuronal damage in SH-SY5Y cells

  • Yu Ri Kwon;Ji-Hyun Kim;Sanghyun Lee;Hyun Young Kim;Eun Ju Cho
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.408-415
    • /
    • 2023
  • Alzheimer's disease constitutes a large proportion of all neurodegenerative diseases and is mainly caused by excess aggregation of amyloid beta (Aβ), which results in oxidative stress, inflammation, and apoptosis in the neurons. Populus tomentiglandulosa belongs to the Salicaceae family and is widely distributed in Korea; the antioxidant activities of the extract and fractions from P. tomentiglandulosa have been demonstrated in previous studies. Specifically, the ethyl acetate (EtOAc) fraction of P. tomentiglandulosa (EtOAc-PT) shows the most powerful antioxidative activity. Therefore, the present study investigates the protective effects of EtOAc-PT against neuronal damage in Aβ25-35-stimulated SH-SY5Y cells. EtOAc-PT restored cell viability significantly as well as inhibited the levels of reactive oxygen species and lactate dehydrogenase release compared to the Aβ25-35-induced control group. Furthermore, the inflammation- and apoptosis-related protein expressions were investigated to demonstrate its neuroprotective mechanism. EtOAc-PT downmodulated the expressions of inducible nitric oxide synthase, cyclooxygenase-2, B-cell lymphoma 2 associated X, and B-cell lymphoma 2. Thus, the findings show that EtOAc-PT has protective effects against Aβ25-35 by suppressing oxidative stress, inflammation, and apoptosis.