• Title/Summary/Keyword: distributed clouds

Search Result 36, Processing Time 0.021 seconds

Design and evaluation of a GQS-based time-critical event dissemination for distributed clouds

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.989-998
    • /
    • 2011
  • Cloud computing provides computation, software, data access, and storage services that do not require end-user knowledge of the physical location and configuration of the system that delivers the services. Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a group quorum system (GQS)-based dissemination for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed GQS-based method organizes these distributed clouds into a group quorum ring overlay to support a constant event dissemination latency. Our numerical results show that the GQS-based method improves the efficiency as compared with Chord-based and Plume methods.

A GGQS-based hybrid algorithm for inter-cloud time-critical event dissemination

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1259-1269
    • /
    • 2012
  • Cloud computing has rapidly become a new infrastructure for organizations to reduce their capital cost in IT investment and to develop planetary-scale distributed applications. One of the fundamental challenges in geographically distributed clouds is to provide efficient algorithms for supporting inter-cloud data management and dissemination. In this paper, we propose a geographic group quorum system (GGQS)-based hybrid algorithm for improving the interoperability of inter-cloud in time-critical event dissemination service, such as computing policy updating, message sharing, event notification and so forth. The proposed algorithm first organizes these distributed clouds into a geographic group quorum overlay to support a constant event dissemination latency. Then it uses a hybrid protocol that combines geographic group-based broad-cast with quorum-based multicast. Our numerical results show that the GGQS-based hybrid algorithm improves the efficiency as compared with Chord-based, Plume an GQS-based algorithms.

Robust and Auditable Secure Data Access Control in Clouds

  • KARPAGADEEPA.S;VIJAYAKUMAR.P
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2024
  • In distributed computing, accessible encryption strategy over Auditable data is a hot research field. Be that as it may, most existing system on encoded look and auditable over outsourced cloud information and disregard customized seek goal. Distributed storage space get to manage is imperative for the security of given information, where information security is executed just for the encoded content. It is a smaller amount secure in light of the fact that the Intruder has been endeavored to separate the scrambled records or Information. To determine this issue we have actualize (CBC) figure piece fastening. It is tied in with adding XOR each plaintext piece to the figure content square that was already delivered. We propose a novel heterogeneous structure to evaluate the issue of single-point execution bottleneck and give a more proficient access control plot with a reviewing component. In the interim, in our plan, a CA (Central Authority) is acquainted with create mystery keys for authenticity confirmed clients. Not at all like other multi specialist get to control plots, each of the experts in our plan deals with the entire trait set independently. Keywords: Cloud storage, Access control, Auditing, CBC.

Star Formation Activity in Infra-Red Dark Cloud at ${\Gamma}53.2^{\circ}$

  • Kim, Hyun-Jeong;Koo, Bon-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • Infra-Red Dark Clouds (IRDCs) seen silhouette against the bright Galactic background in mid-IR are a class of interstellar clouds that are dense and cold with very high column densities. While IRDCs are believed to be the precursors to massive stars and star clusters, individual IRDCs show diverse star forming activities within them. We report a remarkable example of such cloud, the IRDC at ${\Gamma}53.2^{\circ}$, and star formation activity in this cloud. The IRDC was previously identified in part as three separate, arcmin-size clouds in the catalogue of MSX IRDC candidates, but we found that the IRDC is associated with a long, filamentary CO cloud at 2 kpc from the Galactic Ring Survey data of $^{13}CO$ J = 1-0 emission, and that its total extent reaches ~ 30pc. The Spitzer MIPSGAL 24mm data show a number of reddened mid-IR sources distributed along the IRDC which are probably young stellar objects (YSOs), and the UWISH2 $H_2$ data (2.122mm) reveal ubiquitous out flows around them. These observations indicate that the IRDC is a site of active star formation with YSOs in various evolutionary stages. In order to investigate the nature of mid-IR sources, we have performed photometry of MIPSGAL data, and we present a catalogue of YSOs combining other available point source catalogues from optical to IR. We discuss the evolutionary stages and characteristics of YSOs from their IR colors and spectral energy distributions.

  • PDF

LARGE-SCALE [OIII] AND [CII] DISTRIBUTIONS OF THE LARGE MAGELLANIC CLOUD WITH FIS-FTS

  • Takahashi, A.;Yasuda, A.;Kaneda, H.;Kawada, M.;Kiriyama, Y.;Mouri, A.;Mori, T.;Okada, Y.;Takahashi, H.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.219-220
    • /
    • 2012
  • We present the results of far-infrared spectroscopic observations of the Large Magellanic Cloud (LMC) with FIS-FTS. We covered a large area across the LMC, including 30 Doradus (30 Dor) and N44 star-forming regions, by 191 pointings in total. As a result, we detect the [OIII] and [CII] line emission as well as far-infrared dust continuum emission throughout the LMC. We find that the [OIII] emission is widely distributed around 30 Dor. The observed size of the distribution is too large to be explained by massive stars in 30 Dor, which are assumed to be enshrouded by clouds with the constant gas density estimated from the [OIII] line intensities. Therefore the surrounding structure is likely to be highly clumpy. We also find a global correlation between the [OIII] and the far-infrared continuum emission, suggesting that the gas and dust are well mixed in the highly-ionized region where the dust survives in clumpy dense clouds shielded from energetic photons. Furthermore we find that the ratios of [CII]/CO are as high as 110,000 in 30 Dor, and 45,000 even on average, while they are typically 6,000 for star-forming regions in our Galaxy. The unusually high [CII]/CO is also consistent with the picture of clumpy small dense clouds.

A Digital Forensic Framework Design for Joined Heterogeneous Cloud Computing Environment

  • Zayyanu Umar;Deborah U. Ebem;Francis S. Bakpo;Modesta Ezema
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.207-215
    • /
    • 2024
  • Cloud computing is now used by most companies, business centres and academic institutions to embrace new computer technology. Cloud Service Providers (CSPs) are limited to certain services, missing some of the assets requested by their customers, it means that different clouds need to interconnect to share resources and interoperate between them. The clouds may be interconnected in different characteristics and systems, and the network may be vulnerable to volatility or interference. While information technology and cloud computing are also advancing to accommodate the growing worldwide application, criminals use cyberspace to perform cybercrimes. Cloud services deployment is becoming highly prone to threats and intrusions. The unauthorised access or destruction of records yields significant catastrophic losses to organisations or agencies. Human intervention and Physical devices are not enough for protection and monitoring of cloud services; therefore, there is a need for more efficient design for cyber defence that is adaptable, flexible, robust and able to detect dangerous cybercrime such as a Denial of Service (DOS) and Distributed Denial of Service (DDOS) in heterogeneous cloud computing platforms and make essential real-time decisions for forensic investigation. This paper aims to develop a framework for digital forensic for the detection of cybercrime in a joined heterogeneous cloud setup. We developed a Digital Forensics model in this paper that can function in heterogeneous joint clouds. We used Unified Modeling Language (UML) specifically activity diagram in designing the proposed framework, then for deployment, we used an architectural modelling system in developing a framework. We developed an activity diagram that can accommodate the variability and complexities of the clouds when handling inter-cloud resources.

Analysis of Optimal Energy Consumption for Task Migration in Clouds (클라우드에서 태스크 이주를 위한 최적의 에너지 소비 임계값 분석)

  • Choi, HeeSeok;Choi, SookKyong;Park, JiSu;Suh, Teaweon;Yu, Heonchang
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.131-134
    • /
    • 2013
  • 최근 클라우드 컴퓨팅의 발전과 상업적인 성공과 함께 클라우드 자원의 이용률을 최대로 유지하면서 에너지를 효율적으로 사용하기 위한 연구에 대한 관심이 커지고 있다. 자원의 사용률이 최대로 높아지게 되면 에너지 소비량이 급격하게 증가하여 많은 에너지를 사용하게 되므로 자원의 사용율과 에너지 사용은 트레이드오프 관계를 가지게 된다. 따라서 본 논문에서는 자원의 최대 사용 및 효율적인 에너지 사용을 위해 에너지 소비가 최적이 되는 자원 이용률의 임계값을 찾기 위한 연구를 수행하였다. 실험을 위해 자원 중 가장 많은 에너지를 소비하는 CPU를 이용하였고, 전력 측정을 위해 KEM2500 전력계와 ThrottleStop_500 프로그램을 사용하였다. 실험 결과 CPU 사용률이 약 90%일 때 에너지 사용량이 급격하게 증가하였으며, 기존의 평균 자원 이용률과 비교했을 때 12.3% 정도의 전기량이 더 소모됨을 확인하였다. 따라서 클라우드 컴퓨팅에서 CPU 자원의 이용률이 90%일 때 에너지가 최적이라고 할 수 있다.

Satellite Image Analysis of Low-Level Stratiform Cloud Related with the Heavy Snowfall Events in the Yeongdong Region (영동 대설과 관련된 낮은 층운형 구름의 위성관측)

  • Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Cheol;Han, Sang-Ok
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.577-589
    • /
    • 2015
  • An unusual long-period and heavy snowfall occurred in the Yeongdong region from 6 to 14 February 2014. This event produced snowfall total of 194.8 cm and the recordbreaking 9-day snowfall duration in the 103-year local record at Gangneung. In this study, satellite-derived cloud-top brightness temperatures from the infrared channel in the atmospheric window ($10{\mu}m{\sim}11{\mu}m$) are examined to find out the characteristics of clouds related with this heavy snowfall event. The analysis results reveal that a majority of precipitation is related with the low-level stratiform clouds whose cloud-top brightness temperatures are distributed from -15 to $-20^{\circ}C$ and their standard deviations over the analysis domain (${\sim}1,000km^2$, 37 satellite pixels) are less than $2^{\circ}C$. It is also found that in the above temperature range precipitation intensity tends to increase with colder temperature. When the temperatures are warmer than $-15^{\circ}C$, there is no precipitation or light precipitation. Furthermore this relation is confirmed from the examination of some other heavy snowfall events and light precipitation events which are related with the low-level stratiform clouds. This precipitation-brightness temperature relation may be explained by the combined effect of ice crystal growth processes: the maximum in dendritic ice-crystal growth occurs at about $-15^{\circ}C$ and the activation of ice nuclei begins below temperatures from approximately -7 to $-16^{\circ}C$, depending on the composition of the ice nuclei.

Extra-tidal stars around globular clusters NGC 5024 and NGC 5053 and their chemical abundances

  • Chun, Sang-Hyun;Lee, Jae-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2018
  • NGC 5024 and NGC 5053 are among the most metal-poor globular clusters in the Milky Way. Both globular clusters are considered to be accreted from dwarf galaxies (like Sagittarius dwarf galaxy or Magellanic clouds), and common stellar envelope and tidal tails between globular clusters are also detected. We present a search for extra-tidal cluster member candidates around these globular clusters from APOGEE survey data. Using 20 chemical elements (e.g., Fe, C, Mg, Al) and radial velocities, t-distributed stochastic neighbour embedding (t-SNE), which identifies an optimal mapping of a high-dimensional space into fewer dimensions, was explored, and we find that globular cluster stars are well separated from the field stars in 2-dimensional map from t-SNE. We also find that some stars selected in t-SNE map are placed outside of the tidal radius of the clusters. The proper motion of stars outside tidal radius is also comparable to that of globular clusters, which suggest that these stars are tidally decoupled from the globular clusters. We manually measure chemical abundances for the clusters and extra-tidal stars, and discuss the association of extra-tidal stars with the clusters.

  • PDF

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.