• Title/Summary/Keyword: distributed autonomous robotic systems

Search Result 20, Processing Time 0.031 seconds

Strategy of Object Search for Distributed Autonomous Robotic Systems

  • Kim Ho-Duck;Yoon Han-Ul;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.264-269
    • /
    • 2006
  • This paper presents the strategy for searching a hidden object in an unknown area for using by multiple distributed autonomous robotic systems (DARS). To search the target in Markovian space, DARS should recognize th ε ir surrounding at where they are located and generate some rules to act upon by themselves. First of all, DARS obtain 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to research for a target object while navigating in a un known hallway where some obstacles were placed. In the end of this paper, we present the results of three algorithms - a random search, an area-based action making process to determine the next action of the robot and hexagon-based Q-learning to enhance the area-based action making process.

Bluetooth Network for Distributed Autonomous Robotic System

  • Whang, Se-Hee;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2346-2349
    • /
    • 2005
  • Distributed Autonomous Robotic System (DARS) is defined as a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the DARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots such as DARS robots. For this purpose, The Bluetooth communication system must have several features. The first, this system should be separated from other robot parts and operate spontaneously and independently. In other words, this communication system should have the ability to organize and maintain and reorganize a network scheme. The next, this system had better support any kinds of standard interfaces in order to guarantee flexible applicability to other embedded system. We will discuss how to construct and what kind of procedure to develop the network system.

  • PDF

Behavior leaning and evolution of collective autonomous mobile robots using reinforcement learning and distributed genetic algorithms (강화학습과 분산유전알고리즘을 이용한 자율이동로봇군의 행동학습 및 진화)

  • 이동욱;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.8
    • /
    • pp.56-64
    • /
    • 1997
  • In distributed autonomous robotic systems, each robot must behaves by itself according to the its states and environements, and if necessary, must cooperates with other orbots in order to carray out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new learning and evolution method based on reinforement learning having delayed reward ability and distributed genectic algorithms is proposed for behavior learning and evolution of collective autonomous mobile robots. Reinforement learning having delayed reward is still useful even though when there is no immediate reward. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability. Specially, in order to improve the perfodrmance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper, we verify the effectiveness of the proposed method by applying it to cooperative search problem.

  • PDF

Dynamic behavior control of a collective autonomous mobile robots using artificial immune networks (인공면역네트워크에 의한 자율이동로봇군의 동적 행동 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.124-127
    • /
    • 1997
  • In this paper, we propose a method of cooperative control based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B lymphocyte(B cell), each environmental condition as an antigen, and a behavior strategy as an antibody respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is simulated and suppressed by other robot using communication. Finally much simulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy.

  • PDF

A Creative Solution of Distributed Modular Systems for Building Ubiquitous Heterogeneous Robotic Applications

  • Ngo Trung Dung;Lund Henrik Hautop
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.410-415
    • /
    • 2004
  • Employing knowledge of adaptive possibilities of agents in multi-agents system, we have explored new aspects of distributed modular systems for building ubiquitous heterogeneous robotic systems using intelligent building blocks (I-BLOCKS) [1] as reconfigurable modules. This paper describes early technological approaches related to technical design, experimental developments and evaluation of adaptive processing and information interaction among I-BLOCKS allowing users to easily develop modular robotic systems. The processing technology presented in this paper is embedded inside each $DUPLO^1$ brick by microprocessor as well as selected sensors and actuators in addition. Behaviors of an I-BLOCKS modular structure are defined by the internal processing functionality of each I-Block in such structure and communication capacities between I-BLOCKS. Users of the I-BLOCKS system can easily do 'programming by building' and thereby create specific functionalities of a modular robotic structure of intelligent artefacts without the need to learn and use traditional programming language. From investigating different effects of modern artificial intelligence, I-BLOCKS we have developed might possibly contain potential possibilities for developing modular robotic system with different types of morphology, functionality and behavior. To assess these potential I-BLOCKS possibilities, the paper presents a limited range of different experimental scenarios in which I-BLOCKS have been used to set-up reconfigurable modular robots. The paper also reports briefly about earlier experiments of I-BLOCKS created on users' natural inspiration by a just defined concept of modular artefacts.

  • PDF

Cooperative Strategies and Swarm Behavior in Distributed Autonomous Robotic Systems based on Artificial Immune System (인공면역 시스템 기반 자율분산로봇 시스템의 협조 전략과 군행동)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.627-633
    • /
    • 1999
  • In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a ?3-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robot using communication (immune network). Finally much stimulated strateby is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of optimal swarm strategy. Adaptation ability of robot is enhanced by adding T-cell model as a control parameter in dynamic environments.

  • PDF

An Immune System Modeling for Realization of Cooperative Strategies and Group Behavior in Collective Autonomous Mobile Robots (자율이동로봇군의 협조전략과 군행동의 실현을 위한 면역시스템의 모델링)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.127-130
    • /
    • 1998
  • In this paper, we propose a method of cooperative control(T-cell modeling) and selection of group behavior strategy(B-cell modeling) based on immune system in distributed autonomous robotic system(DARS). Immune system is living body's self-protection and self-maintenance system. Thus these features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For the purpose of applying immune system to DARS, a robot is regarded as a B cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-call respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based of clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.

  • PDF

Object Search Algorithm under Dynamic Programming in the Tree-Type Maze

  • Jang In-Hun;Lee Dong-Hoon;Sim Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.333-338
    • /
    • 2005
  • This paper presents the target object search algorithm under Dynamic Programming (DP) in the Tree-type maze. We organized an experimental environment with the concatenation of Y-shape diverged way, small mobile robot, and a target object. By the principle of optimality, the backbone of DP, an agent recognizes that a given whole problem can be solved whether the values of the best solution of certain ancillary problem can be determined according to the principle of optimality. In experiment, we used two different control algorithms: a left-handed method and DP. Finally we verified the efficiency of DP in the practical application using our real robot.

Development of a Synthetic Multi-Agent System;The KMITL Cadence 2003 Robotic Soccer Simulation Team, Intelligent and AI Based Control

  • Chitipalungsri, Thunyawat;Jirawatsiwaporn, Chawit;Tangchupong, Thanapon;Kittitornkun, Surin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.879-884
    • /
    • 2004
  • This paper describes the development of a synthetic multi-agent called KMITL Cadence 2003. KMITL Cadence 2003 is a robotic soccer simulation team consisting of eleven autonomous software agents. Each agent operates in a physical soccer simulation model called Robocup Soccer Server which provides fully distributed and real-time multi-agent system environment. All teammates have to cooperate to achieve the common goal of winning the game. The simulation models many aspects of the football field such as noise in ball movements, noisy sensors, unreliable communication channel between teammates and actuators, limited physical abilities and restricted communication. This paper addresses the algorithm to develop the soccer agents to perform basic actions which are scoring, passing ball and blocking the opponents effectively. The result of this development is satisfactory because the successful scoring attempts is increased from 11.1% to 33.3%, successful passing ball attempts is increased from 22.08% to 63.64%, and also, successful intercepting attempts is increased from 88% to 97.73%.

  • PDF

An Analysis of Information Propagation and Chaotic Phenomena in Local Communication Method for Cooperative Behavior of Collective Autonomous Mobile Robots (자율이동로봇군의 협조행동을 위한 지역적 통신 방식에 있어서 정보전파 해석 및 카오스 현상 분석)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.6
    • /
    • pp.67-75
    • /
    • 1999
  • The sensing and communication abilities of a mobile robot are essential to cooperative behavior in distributed autonomous robotic systems. In general, as the number of robot goes on increasing, the limitation of communication capacity and information overflow occur in global communication capacity and information overflow occur in global communication system. Therefore a local communication is more effective than global one. In this paper, we analyze information propagation mechanism based on local communication. To find an optimal communication radius, we propose three methods with different conditions. Also, to avoid chaotic behavior which occurs when a robot obtains and loses information, we find stable condition of information propagation.

  • PDF