독립된 자율로봇에서 머신비젼의 구동을 위해 본 논문에서는 DARS(Distributed Autonomous Robotic System)에 적용하기 위한 디지털 이미지 프로세싱을 연구하고, DARS의 개별 로봇에 이를 임베디드화하는 것을 연구한다. 따라서 로봇을 구동하기 위해 필요한 데이터를 CMOS 카메라로부터 수신하여 영상을 스캔한 후, 원영상을 신경망 알고리즘을 통해 클러스터링하여 필요한 데이터를 추출한다. 또 이를 사용자 컴퓨터 단말기 상에 디스플레이하고, 최종적으로 DARS의 자율 이동 로봇이 영상 데이터를 인지하여 특정한 선택 동작을 수행하도록 한다.
In this paper, we present the strategy of object search for distributed autonomous robotic systems (DARS). The DARS are the systems that consist of multiple autonomous robotic agents to whom required functions are distributed. For instance, the agents should recognize their surrounding at where they are located and generate some rules to act upon by themselves. In this paper, we introduce the strategy for multiple DARS robots to search a hidden object at the unknown area. First, we present an area-based action making process to determine the direction change of the robots during their maneuvers. Second, we also present Q learning adaptation to enhance the area-based action making process. Third, we introduce the coordinate system to represent a robot's current location. In the end of this paper, we show experimental results using hexagon-based Q learning to find the hidden object.
In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.
International Journal of Fuzzy Logic and Intelligent Systems
/
제5권2호
/
pp.151-156
/
2005
This paper proposes a Distributed Autonomous Robotic System(DARS) based on an Artificial Immune System(AIS) and a Classifier System(CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in given environment. These actions are composed of two types: aggregation and dispersion. AIS decides one among these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local one. The proposed system will be more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.
In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). An immune system is the living bodys self-protection and self-maintenance system. these features can be applied to decision making of the optimal swarm behavior in a dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody, and control parameter as a T-cell, respectively. When the environmental condition (antigen) changes, a robot selects an appropriate behavior strategy (antibody). And its behavior strategy is stimulated and suppressed by other robots using communication (immune network). Finally, much stimulated strategy is adopted as a swarm behavior strategy. This control scheme is based on clonal selection and immune network hypothesis, and it is used for decision making of the optimal swarm strategy. Adaptation ability of the robot is enhanced by adding T-cell model as a control parameter in dynamic environments.
This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.
In this paper, we propose a method of cooperative control (T-cell modeling) and selection of group behavior strategy (B-cell modeling) based on immune system in distributed autonomous robotic system (DARS). Immune system is living body's self-protection and self-maintenance system. These features can be applied to decision making of optimal swarm behavior in dynamically changing environment. For applying immune system to DARS, a robot is regarded as a B-cell, each environmental condition as an antigen, a behavior strategy as an antibody and control parameter as a T-cell respectively. The executing process of proposed method is as follows. When the environmental condition changes, a robot selects an appropriate behavior strategy. And its behavior strategy is stimulated and suppressed by other robot using communication. Finally much stimulated strategy is adopted as a swarm behavior strategy. This control school is based on clonal selection and idiotopic network hypothesis. And it is used for decision making of optimal swarm strategy. By T-cell modeling, adaptation ability of robot is enhanced in dynamic environments.
International Journal of Fuzzy Logic and Intelligent Systems
/
제2권3호
/
pp.185-190
/
2002
In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.
본 논문에서는 인공 면역 시스템과 분류자 시스템에 기반하여 동작하는 자율분산로봇 시스템을 제안한다. 시스템에서 로봇들의 행동은 전역행동과 지역행동으로 분류된다. 전역행동은 환경에서 작업을 탐색하는데 이를 빠르게 수행하기 위하여 집합과 분산의 두 가지 행동으로 이루어져 있다 이때 인공 면역 시스템은 로봇이 어떤 행동을 선택하여 행동할 것인가를 결정한다. 지역행동은 탐색된 작업을 수행하는 부분으로서 어떤 로봇들이 협조행동을 할지를 학습하고, 학습한 결과에 따라 작업을 수행하는 행동을 한다. 이를 위해 분류자 시스템을 이용하여 각 로봇들은 주어진 작업에 대하여 학습을 한다. 제안된 시스템에서 학습 알고리즘은 주어지는 작업의 변화로봇들은 주어진 작업을 수행하기 위해 학습을 하고, 주어진 작업이 변할 경우 스스로 대처한다는 면에서 기존의 자율 분산 시스템보다 적응성에서 향상된 시스템이다.
본 논문에서는 인공 면역 시스템과 분산 유전자 알고리즘에 기반하여 동작하는 자율분산로봇 시스템을 제안한다. 시스템에서 로봇들의 행동은 전역행동과 지역행동으로 분류된다. 전역행동은 환경에서 작업을 탐색하는데 이를 빠르게 수행하기 위하여 집합과 분산의 두 가지 행동으로 이루어져 있다. 이때 인공 면역 시스템은 로봇이 어떤 행동을 선택하여 행동할 것인가를 결정한다. 지역행동은 탐색된 작업을 수행하는 부분으로서 어떤 로봇들이 협조행동을 할지를 학습하고, 학습한 결과에 따라 작업을 수행하는 행동을 한다. 이를 위해 분산 유전자 알고리즘을 이용하여 각 로봇들은 주어진 작업에 대하여 학습을 한다. 제안된 시스템에서 학습 알고리즘은 주어지는 작업의 변화로봇들은 주어진 작업을 수행하기 위해 학습을 하고, 주어진 작업이 변할 경우 스스로 대처한다는 면에서 기존의 자율 분산 시스템보다 적응성에서 향상된 시스템이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.