• Title/Summary/Keyword: distributed applications

Search Result 1,258, Processing Time 0.025 seconds

Three-Phase ZVS DC-DC Converter with Low Transformer Turn Ratio for High Step-up and High Power Applications (낮은 변압기 턴비를 갖는 고승압.대전력용 3상 ZVS DC-DC컨버터)

  • Kim, Joon-Geun;Park, Chan-Soo;Choi, Se-Wan;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 2011
  • The proposed converter has easy device selection for high step-up and high power applications since boost half bridge and voltage doubler cells are connected, respectively, in parallel and series in order to increase output power and voltage. Especially, optimized design of high frequency transformers is possible owing to reduced turn ratio and eliminated dc offset, and distributed power through three cores is beneficial to low profile and thermal distribution. The proposed converter does not necessitate start-up circuit and additional clamp circuit due to the use of whole duty range between 0 and 1 and is suitable for applications with wide input voltage range. Also, high efficiency can be achieved since ZVS turn on of switches are achieved in wide duty cycle range and ZCS turn on and off of diodes are achieved. The proposed converter was validated through 5 kW prototype.

Blockchain for Securing Smart Grids

  • Aldabbagh, Ghadah;Bamasag, Omaimah;Almasari, Lola;Alsaidalani, Rabab;Redwan, Afnan;Alsaggaf, Amaal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.255-263
    • /
    • 2021
  • Smart grid is a fully-automated, bi-directional, power transmission network based on the physical grid system, which combines sensor measurement, computer, information communication, and automatic control technology. Blockchain technology, with its security features, can be integrated with Smart Grids to provide secure and efficient power management and transmission. This paper dicusses the deployment of Blockchain technology in Smart Grid. It presents application areas and protocols in which blockchain can be applied to in securing smart grid. One application of each area is explored in detail, such as efficient peer-to-peer transaction, lower platform costs, faster processes, greater flexibility in power generation to transmission, distribution and power consumption in different energy storage systems, current barriers obstructing the implementation of blockchain applications with some level of maturity in financial services but concepts only in energy and other sectors. Wide range of energy applications suggesting a suitable blockchain architecture in smart grid operations, a sample block structure and the potential blockchain technicalities employed in it. Also, added with efficient data aggregation schemes based on the blockchain technology to overcome the challenges related to privacy and security in the smart grid. Later on, consensus algorithms and protocols are discussed. Monitoring of the usage and statistics of energy distribution systems that can also be used to remotely control energy flow to a particular area. Further, the discussion on the blockchain-based frameworks that helps in the diagnosis and maintenance of smart grid equipment. We have also discussed several commercial implementations of blockchain in the smart grid. Finally, various challenges have been discussed for integrating these technologies. Overall, it can be said at the present point in time that blockchain technology certainly shows a lot of potentials from a customer perspective too and should be further developed by market participants. The approaches seen thus far may have a disruptive effect in the future and might require additional regulatory intervention in an already tightly regulated energy market. If blockchains are to deliver benefits for consumers (whether as consumers or prosumers of energy), a strong focus on consumer issues will be needed.

Mobile Ultra-Broadband, Super Internet-of-Things and Artificial Intelligence for 6G Visions

  • Hamza Ali Alshawabkeh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.12
    • /
    • pp.235-245
    • /
    • 2023
  • Smart applications based on the Network of Everything also known as Internet of Everything (IoE) are increasing popularity as network connectivity requires rise further. As a result, there will be a greater need for developing 6G technologies for wireless communications in order to overcome the primary limitations of visible 5G networks. Furthermore, implementing neural networks into 6G will bring remedies for the most complex optimizing networks challenges. Future 6G mobile phone networks must handle huge applications that require data and an increasing amount of users. With a ten-year time skyline from thought to the real world, it is presently time for pondering what 6th era (6G) remote correspondence will be just before 5G application. In this article, we talk about 6G dreams to clear the street for the headway of 6G and then some. We start with the conversation of imaginative 5G organizations and afterward underline the need of exploring 6G. Treating proceeding and impending remote organization improvement in a serious way, we expect 6G to contain three critical components: cell phones super broadband, very The Web of Things (or IoT and falsely clever (artificial intelligence). The 6G project is currently in its early phases, and people everywhere must envision and come up with its conceptualization, realization, implementation, and use cases. To that aim, this article presents an environment for Presented Distributed Artificial Intelligence as-a-Services (DAIaaS) supplying in IoE and 6G applications. The case histories and the DAIaaS architecture have been evaluated in terms of from end to end latency and bandwidth consumption, use of energy, and cost savings, with suggestion to improve efficiency.

Development of a general framework of resonance self-shielding treatment for broad-spectrum reactor lattice physics calculation

  • Jinchao Zhang;Qian Zhang;Hang Zou;Jialei Yu;Wei Cao;Shifu Wu;Shuai Qin;Qiang Zhao;Erez Gilad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4335-4354
    • /
    • 2024
  • Some core designs integrate high-enriched fuel and moderator materials to enhance neutron utilization. This combination results in a broad spectrum within the system, posing challenges in resonance calculation. This paper introduces a general framework to realize resonance self-shielding treatment in broad-spectrum fuel lattice problems. The framework consists of three components. First, a new energy group structure is devised to support resonance calculation in the entire energy range and capture spectral transition and thermalization effects during eigenvalue calculation. Second, the subgroup method based on narrow approximation is selected as a universal method to perform resonance calculation. Finally, transport equations for each fissionable region are solved for neutron flux to collapse the fission spectrum. The proposed method is verified against fast, intermediate, and thermal spectrum pin cell problems and an assembly problem featuring a fast-thermal coupled spectrum. Numerical results affirm the accuracy of the proposed method in handling these scenarios, with eigenvalue errors below 154 pcm for pin cell problems and 106 pcm for the assembly problem. The verification results revealed that the proposed method enables accurate resonance self-shielding treatment for broad-spectrum problems.

Dynamic Reconfigurable Integrated Management and Monitoring System for Heterogeneous Distributed Environments (이기종 분산 환경에서 동적 재구성이 가능한 통합 관리 및 모니터링 시스템)

  • Min, Bup-Ki;Seo, Yongjin;Kim, Hyeon Soo;Kuk, Seunghak;Jung, Yonghwan;Kim, Chumsu
    • Journal of Internet Computing and Services
    • /
    • v.13 no.6
    • /
    • pp.63-74
    • /
    • 2012
  • In this paper, we develop an integrated management/monitoring system that supports to dynamically reconfigure information models for systems or applications managed by heterogeneous distributed systems. When the subsystems on diverse platforms are added, removed, or modified, the altered configurations should conform to the configuration information of the integrated management/monitoring system. Further, upon the system configurations being changed, the altered system configurations should be synchronized with the information on the integrated management/monitoring system. Moreover, availability should be assured during synchronization to the extent that users can access the monitoring information with no system halting. This paper focuses on notifying the integrated management/monitoring system of any changes in hardware/software configurations on any subsystems under its management, and on dynamically re-configuring the information about hardware and software being managed based on the information notified. Finally, we expect that this research will be contributory to carrying out reliable integrated management by reflecting the information on any heterogeneous distributed systems in the integrated management/monitoring system.

A Logical Cell-Based Approach for Robot Component Repositories (논리적 셀 기반의 로봇 소프트웨어 컴포넌트 저장소)

  • Koo, Hyung-Min;Ko, In-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.8
    • /
    • pp.731-742
    • /
    • 2007
  • Self-growing software is a software system that has the capability of evolving its functionalities and configurations by itself based on dynamically monitored situations. Self-growing software is especially necessary for intelligent service robots, which must have the capability to monitor their surrounding environments and provide appropriate behaviors for human users. However, it is hard to anticipate all situations that robots face with, and it is hard to make robots have all functionalities for various environments. In addition, robots have limited internal capacity. To support self-growing software for intelligent service robots, we are developing a cell-based distributed repository system that allows robots and developers transparently to share robot functionalities. To accomplish the creation of evolutionary repositories, we invented the concept of a cell, which is a logical group of distributed repositories based upon the functionalities of components. In addition, a cell can be used as a unit for the evolutionary growth of the components within the repositories. In this paper, we describe the requirements and architecture of the cell-based repository system for self-growing software. We also present a prototype implementation and experiment of the repository system. Through the cell-based repositories, we achieve improved performance of self-growing actions for robots and efficient sharing of components among robots and developers.

A Fog-based IoT Service Interoperability System using Blockchain in Cloud Environment (클라우드 환경에서 블록체인을 이용한 포그 기반 IoT 서비스 상호운용 시스템)

  • Kim, Mi Sun;Park, Yong Suk;Seo, Jae Hyun
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.39-53
    • /
    • 2022
  • Cloud of Things (CoT) can provide IoT applications with unlimited storage functions and processing power supported by cloud services. However, in a centralized cloud of things, it can create a single point of failure that can lead to bottleneck problems, outages of the CoT network. In this paper, to solve the problem of centralized cloud of things and interoperate between different service domains, we propose an IoT service interoperability system using distributed fog computing and blockchain technology. Distributed fog is used to provide real-time data processing and services in fog systems located at a geographically close distance to IoT devices, and to enable service interoperability between each fog using smart contracts and distributed ledgers of the blockchain. The proposed system provides services within a region close to the distributed fog entrusted with the service from the cloud, and it is possible to access the services of other fogs without going through the cloud even between fogs. In addition, by sharing a service right token issuance information between the cloud and fog nodes using a blockchain network, the integrity of the token can be guaranteed and reliable service interoperability between fog nodes can be performed.

Hybrid Excitation Control of SRM Drive for Reduction of Vibration and Acoustic Noise

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo;Park, Sung-Jun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.151-155
    • /
    • 2001
  • The simple motor construction and low cost, fault tolerant power electronic drive has made the switched reluctance drive a strong contender for many applications. But the switched reluctance drive does exhibit higher levels of vibration and acoustic noise than that of most competing drives. The main source of vibration in the switched reluctance drive is generated by rapid change of radial magnetic force when phase current is extinguished during commutation action. In this paper, a hybrid excitation method is proposed to reduce vibration and acoustic noise of the switched reluctance drive. The hybrid excitation has 2-phase excitation by long dwell angle as well as conventional 1-phase excitation. The vibration and acoustic noise are reduced because the scheme reduces abrupt change of excitation level by distributed and balanced excitation.

  • PDF

Transient Response of Optically-Controlled Microwave Pulse through Open-Ended Microstrip Lines

  • Kim, Yong K.;Kim, Jin-Su;Park, Kyoung-Su
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.236-240
    • /
    • 2004
  • In this paper we examine the reflection characteristics of dielectric microstrip lines with open-ended termination containing an optically induced plasma region, which are analyzed by the assumption that the plasma is distributed homogeneously in laser illumination. The characteristics impedances resulting from the presence of plasma are evaluated by the transmission line model. To estimate theoretically the characteristic response of identical systems in the time domain, the Fourier transformation method is evaluated. The reflection characteristics of time and frequency response in microwave systems have been calculated using an equivalent circuit model.

Rights Control for the Exchange and Sharing of IFC Model-based Standard Construction Drawing Information (IFC 모델기반 표준건설도면 정보의 교환 및 공유를 위한 권한제어에 관한 연구)

  • Hong, Kang-Han;Kim, In-Han
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.286-295
    • /
    • 2008
  • Construction industry, which is a composite industry being performed by organic combination of various tasks, gives birth to a various of information in the stages of planning, designing, and maintenance management. In particular, the drawing information is broad in the scope of use because it contains all information about buildings as wall as bid, materials, contracts. Therefore, the management of drawing information security is one of the most important factors, which determines the success of failure of business. The major findings and result of this study are as follows to control the distributed drawing information in the collaboration environment. 1) Analysis for function and practical use of DRM in the construction industry. 2) Proposal for applications of DRM that can secure IFC model-based drawing information in the collaboration environment. 3) Extraction from additional IFC entities to apply DRM to part 21 physical files 4) Analysis for functions which are necessary in DRM application prototype system and development of the system. 5) Development IFC model-based DRM prototype system.