• Title/Summary/Keyword: distributed antenna

Search Result 119, Processing Time 0.046 seconds

Preparation of Large Area Plasma Source by Helical Resonator Arrays (Helical Resonator 배열을 통한 대면적 고밀도 Plasma Source)

  • 손민영;김진우;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.282-285
    • /
    • 2000
  • Four helical resonators are distributed in a 2 ${\times}$ 2 array by modifying upper part of the conventional reactive ion etching(RIE) type LCD etcher in order to prepare a large area plasma source. Since the resonance condition of the RF signal to the helical antenna, one RF power supply is used for delivering the power efficiently to all four helical resonators without an impedance matching network Previous work of 2 ${\times}$ 2array inductively coupled plasma(ICP)requires one matching circuit to each ICP antenna for more efficient power deliverly Distributions of ion density and electron temperature are measured in terms of chamber pressure, gas flow rate and RF power . By adjusting the power distribution among the four helical resonator units, argon plasma density of higher than 10$\^$17/㎥ with the uniformity of better than 7% can be obtained in the 620 ${\times}$ 620$\textrm{mm}^2$ chamber.

  • PDF

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks

  • Oh Mi-Kyung;Ma Xiaoli;Giannakis Georgios B;Park Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.284-293
    • /
    • 2005
  • A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

Effects of Array Weight Errors on Parallel Interferene Cancellation Receiver in Uplink Synchronous and Asynchronous DS-CDMA Systems

  • Kim, Yong-Seok;Hwang, Seung-Hoon;Whang, Keum-Chan
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.413-422
    • /
    • 2004
  • This paper investigates the impacts of array weight errors (AWE) in an antenna array (AA) on a parallel interference cancellation (PIC) receiver in uplink synchronous and asynchronous direct sequence code division multiple access (DS-CDMA) systems. The performance degradation due to an AWE, which is approximated by a Gaussian distributed random variable, is estimated as a function of the variance of the AWE. Theoretical analysis, confirmed by simulation, demonstrates the tradeoffs encountered between system parameters such as the number of antennas and the variance of the AWE in terms of the achievable average bit error rate and the user capacity. Numerical results show that the performance of the PIC with the AA in the DS-CDMA uplink is sensitive to the AWE. However, either a larger number of antennas or uplink synchronous transmissions have the potential of reducing the overall sensitivity, and thus improving its performance.

  • PDF

Enhanced Adaptive Beamforming and Null Steering Algorithms in Cognitive Radio System

  • Zhuang, Zhili;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.822-830
    • /
    • 2009
  • The spectrum efficiency of mobile communication networks can be improved dramatically adopting multiple antennas technologies. In order to guarantee the licensed rights of primary user (PU), the cognitive radio system should perform in a relatively low interference manner when it gets access to the spectrum of licensed networks. In this paper, we explore a uniformly distributed circular antenna array to implement beamforming algorithm that is accomplished by optimization method at the base station of cognitive radio networks, and therefore we can suppress the interference to PU by steering quite low transmission power toward PU and constructing a narrow beam toward cognitive user (CU). By reducing the constraint number of the optimization problem, we also propose a null steering algorithm that steers rather low radiation power toward PU, while the other areas in the same cell are covered by radiation power except the local area around PU. It is pursued to reduce the computation load and enlarge the capacity of cognitive radio networks extremely. The simulation results demonstrate that the proposed algorithms process superior performance.

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

Adaptive Radiation in the Cavity using Slot Antenna (캐비티내 슬룻안테나를 이용한 적응분사)

  • Kim, T.B.;Kim, S.G.;Park, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1896-1899
    • /
    • 1997
  • In this paper, New radiation system is presented to improve efficiency and distribution of MWO. And it has one input for two excitatied lines with located on them radiation elements(slots). Radiation elements are distributed along the lines the way that the same electrical distances from the magnetron. New radiation system recompences change of impedance at wide b and frequency.

  • PDF

An Exact Closed-Form Expression for Bit Error Rate of Decode-and-Forward Relaying Using Selection Combining over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.480-488
    • /
    • 2009
  • Cooperative transmission is an effective solution to improve the performance of wireless communications over fading channels without the need for physical co-located antenna arrays. In this paper, selection combining is used at the destination instead of maximal ratio combing to optimize the structure of destination and to reduce power consumption in selective decode-and-forward relaying networks. For an arbitrary number of relays, an exact and closed-form expression of the bit error rate (BER) is derived for M-PAM, M-QAM, and M-PSK, respectively, in both independent identically distributed and independent but not identically distributed Rayleigh fading channels. A variety of simulations are performed and show that they match exactly with analytic ones. In addition, our results show that the optimum number of relays depend not only on channel conditions (operating SNRs) but also on modulation schemes which to be used.

Design and Fabrication of Distributed Analog Phase Shifter Using Ferroelectric $(Ba,\;Sr)TiO_3$ Thin Films (강유전체 $(Ba,\;Sr)TiO_3$ 박막을 이용한 분포 정수형 아날로그 위상 변위기 설계 및 제작)

  • Ryu, Han-Cheol;Moon, Seung-Eon;Lee, Su-Jae;Kwak, Min-Hwan;Lee, Sang-Seok;Kim, Young-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.616-619
    • /
    • 2003
  • This work presents the design, fabrication and microwave performance of distributed analog phase shifter (DAPS) fabricated on $(Ba,\;Sr)TiO_3$ (BST) thin films for X-band applications. Ferroelectric BST thin films were deposited on MgO substrates by pulsed laser deposition. The DAPS consists of high impedance coplanar waveguide (CPW) and periodically loaded tunable BST interdigitated capacitors (IDC). In order to reduce the insertion loss of DAPS and to remove the alteration of unloaded CPW properties according to an applied dc bias voltage, BST layer under transmission lines were removed by photolithography and RF-ion milling. The measured results are in good agreement with the simulated results at the frequencies of interest. The measured differential phase shift based on BST thin films was $24^{\circ}$ and the insertion loss decreased from 1.1 dB to 0.7 dB with increasing the bias voltage from 0 to 40V at 10 GHz.

  • PDF