• 제목/요약/키워드: distortional stresses

검색결과 14건 처리시간 0.02초

단면변형의 효과를 포함한 강상자형 거더의 엄밀한 해석 (An Exact Analysis of Steel Box Girders with the Effects of Distortional Deformation of Sections)

  • 진만식;이병주;김문영
    • 한국전산구조공학회논문집
    • /
    • 제17권1호
    • /
    • pp.11-20
    • /
    • 2004
  • 본 연구에서는 직선 강상자형 거더의 단면변형에 의한 변형 및 응력계산을 위한 Matlab 해석프로그램을 개발하고자 한다. 이를 위하여 단면변형이론을 요약하고 빔유사이론을 제시한다. 이후 탄성지반위의 보-기둥부재의 지배방정식을 제시하고, 일반화된 고유치해석을 통하여 집중 및 분포하중을 받는 보요소의 엄밀한 강성행렬을 계산한다. 본 연구의 효율성과 정확성을 입증하기 위하여 격벽을 갖는 상자형 거더의 뒤틀림응력을 계산하고 유한요소해와 비교한다.

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed;G. Khushbu;M. Anbarasu;Ather Khan
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.117-125
    • /
    • 2024
  • This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

다실 박스거더의 뒤틀림에 저항하는 강성 산정 (Evaluation of Stiffness Resisting Distortion of Multicell Box Girder)

  • 박남희;최영준;한금호;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.435-442
    • /
    • 2002
  • In a multicell box structure, distortional warping normal stress due to warping of cross section and transverse bending normal stress of walls due to distortion of cross section may consider as significant stresses unless distortion of box section is appropriately restricted. Nevertheless, during the past decades, no evaluation of distortional warping and transverse bending resistances for the multicell box section has been performed owing to geometric complexity and Insufficient information with respect to the distortion of multicell box section. The objective of present study is to evaluate the distortional warping and transverse bending resistances for the distortion of multicell box section and to validate the resistances through box girder analyses using multicell box beam element developed and conventional shell element. This developed box beam element has nine degrees of freedom per node including the effect of distortion.

  • PDF

Post buckling mechanics and strength of cold-formed steel columns exhibiting Local-Distortional interaction mode failure

  • Muthuraj, Hareesh;Sekar, S.K.;Mahendran, Mahen;Deepak, O.P.
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.621-640
    • /
    • 2017
  • This paper reports the numerical investigation conducted to study the influence of Local-Distortional (L-D) interaction mode buckling on post buckling strength erosion in fixed ended lipped channel cold formed steel columns. This investigation comprises of 81 column sections with various geometries and yield stresses that are carefully chosen to cover wide range of strength related parametric ratios like (i) distortional to local critical buckling stress ratio ($0.91{\leq}F_{CRD}/F_{CRL}{\leq}4.05$) (ii) non dimensional local slenderness ratio ($0.88{\leq}{\lambda}_L{\leq}3.54$) (iii) non-dimensional distortional slenderness ratio ($0.68{\leq}{\lambda}_D{\leq}3.23$) and (iv) yield to non-critical buckling stress ratio (0.45 to 10.4). The numerical investigation is carried out by conducting linear and non-linear shell finite element analysis (SFEA) using ABAQUS software. The non-linear SFEA includes both geometry and material non-linearity. The numerical results obtained are deeply analysed to understand the post buckling mechanics, failure modes and ultimate strength that are influenced by L-D interaction with respect to strength related parametric ratios. The ultimate strength data obtained from numerical analysis are compared with (i) the experimental tests data concerning L-D interaction mode buckling reported by other researchers (ii) column strength predicted by Direct Strength Method (DSM) column strength curves for local and distortional buckling specified in AISI S-100 (iii) strength predicted by available DSM based approaches that includes L-D interaction mode failure. The role of flange width to web depth ratio on post buckling strength erosion is reported. Then the paper concludes with merits and limitations of codified DSM and available DSM based approaches on accurate failure strength prediction.

Strategy to increase distortional rigidity of crane box girder: Staggered truss diaphragm

  • Yangzhi Ren;Wenjing Guo;Xuechun Liu;Bin Wang;Piyong Yu;Xiaowen Ji
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.461-472
    • /
    • 2023
  • This paper proposes a novel method for increasing the distortional frame rigidity of off-rail box girder bridges for cranes by reinforcing the diaphragm with staggered truss. The study starts by using the Matrix Displacement Method to determine the shear angle of the staggered truss diaphragm under two assumptions: hinge joint and rigid joint. To obtain closed-form solutions for the transversal and longitudinal deformations and warping stress of the crane girder, the study employs the Initial Parameter Method and considers the compatibility of shear deformation at joints between the diaphragms and the girder. The theoretical solutions are validated through finite element analysis, which also confirms that the hinge-joint assumption accurately represents the shear angle of the staggered truss diaphragm in girder distortion. Additionally, the study conducts extensive parameter analyses to examine the impact of staggered truss dimensions on distortional stress and deformation. Furthermore, the study compares the distortional warping stresses of crane girders reinforced with staggered truss diaphragms and those reinforced with perforated ones, emphasizing the importance of incorporating stagger truss in diaphragms. Overall, this paper provides a thorough evaluation of the proposed approach's effectiveness in enhancing the distortional frame rigidity of off-rail box girder bridges for cranes. The findings offer valuable insights into the design and reinforcement of diaphragms using staggered truss to enhance the structural performance of crane girders.

강박스거더 교량의 프레임 형식 중간다이아프램의 설계 (Design of Longitudinal prestress of precast decks in twin-girder continuous composite bridges)

  • 윤동용;안성현;이성철
    • 한국강구조학회 논문집
    • /
    • 제18권5호
    • /
    • pp.515-524
    • /
    • 2006
  • 강박스거더에 편심이 작용하면 단면은 뒤틀리고, 이로 인해서 종방향으로 뒤틀림 응력이 발생한다. 휨모멘트에 의한 휨응력 이외에뒤틀림으로 인한 추가되는 종방향 응력은 경우에 따라서는 무시할 수 없이 크기 때문에 설계단계에서 반드시 고려되어야 한다. 일반적으로 중간다이아프램을 설치하여 뒤틀림 변형 자체를 억제시켜 뒤틀림응력의 크기를 제안하는 방법을 이용하는데, 이때 휨응력에 비교하여 뒤틀림응력의 크기를 통상 5~10%정도로 제한한다. 현재 적용하는 중간다이아프램 설치간격에 대한 공식은 고전적인 BEF 이론을 바탕으로 유도되었는데, 이는지나치게 보수적인 설계를 유도하고있다. 이에 본 연구에서 강박스거더의 프레임형식 중간다이아프램에 대해 3차원 유한요소해석을 수행하여 분석한 결과, 현행 중간다이아프램 단면적 공식은 지나치게 큰 값을 요구하는 것으로 나타났다. 그래서 유한요소 해석결과를 회귀분석하여 설계 초기에 적용할 수 있는 개선된 프레임형식의 중간다이아프램 단면적 설계공식을 제안하였다.

상자형 거더의 격벽이 뒤틀림에 미치는 영향 (The Effect of Diaphragm on the Distortion of Box Girders)

  • 황선호;홍성수;최진유;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 1999
  • It is well known that l-girders are weak in torsion and it might be more economical to use a box girder, which has great torsional rigidity. The use of box beams does, however, present a potential problem in that cross-sectional distortions can induce large warping normal stresses and transverse bending stress. Accordingly a sufficient number of diaphragms are provided to make the distortional effects minimal. In engineering practice, diaphragms are spaced in 5m intervals without reasonable basis. It is considered to be noneconomical design to the almost design engineers, and it may produce the unsafe structural systems in special cases such as curved bridges with large initial curvature. These problems have not been solved for the lack of adequate tools of structural analysis. In this study, on the basis of the parametric studies, the design formulas for the distortional warping stress and the reasonable diaphragm spacing of box girder were presented.

  • PDF

다이아프램 형상 및 간격에 따른 곡선 강박스거더의 거동해석 (A Behavioral Analysis of Curved Steel Box Bridge Associated with Diaphragm's Shape and Spacing)

  • 김연태;김상철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.205-215
    • /
    • 2006
  • 본 연구는 3차원 쉘요소를 이용한 유한요소해석을 통해 다이아프램으로 보강된 곡선 강박스거더교의 거동을 분석하였다. 매개변수연구를 통해 기존의 제안식과 비교함으로써 모델링의 타당성을 검증하였고, 뒤틀림 응력에 크게 영향을 미치는 인자는 중심내각, 지간길이, 다이아프램간격임을 확인하였다. 또한, 다이아프램의 간격, 개구율, 형상을 변수로 하여 해석한 결과에서는 지간이 30m, 곡률 반경이 40m인 해석모델에 대한 적정 다이아프램간격은 5m인 것으로 나타났다. 다이아프램의 형상 효과에 대해서는 라멘식 다이아프램의 경우가 개구율 0.4~0.6의 범위에서 개구부가 없는 충복판식 다이아프램보다 휨과 뒤틀림의 응력비가 낮아 거동에 유리한 것으로 나타났으며, 충복판식 다이아프램과 X형 트러스 방식의 다이아프램 비교에서는 동일한 강성을 가지더라도 충복판식 다이아프램이 뒤틀림응력을 보다 효과적으로 제어하였다.