• Title/Summary/Keyword: distance traveled

Search Result 65, Processing Time 0.023 seconds

A comparative study of the past and present locations of Cui Pu's "Piaohailu" (崔溥 《漂海錄》 经由地点古今对比研究)

  • Choi, Changwon
    • Industry Promotion Research
    • /
    • v.8 no.1
    • /
    • pp.143-150
    • /
    • 2023
  • Cui Pu Korea period official, 1487 AD to Jeju Island to perform official duties, after the death of his father, in 1488 leap on the third day of the first month home, unfortunately encountered a storm on the way, and drifting in the sea nearly half a month later, finally landed in the "Datang state Zhejiang Taizhou Prefecture near the Hai county border" (now Sanmen county). Cui Pu traveled overland from Taizhou to Hangzhou, then via Hangzhou, by boat along the Beijing-Hangzhou Grand Canal to Beijing, and then by land from Beijing through Shanhaiguan Pass, through the Yalu River back to his motherland. We have pieced together the distance he traveled, the current situation of the places he passed through. He also hopes to make a new record of the changes of these sites by revisiting the important sites he has walked. This study explores Cui Pu's footprints and reviews the history by comparing the ancient and modern places he passed through.

Localization Algorithm in Wireless Sensor Networks using the Acceleration sensor (가속도 센서를 이용한 무선 센서 네트워크하에서의 위치 인식 알고리즘)

  • Hong, Sung-Hwa;Jung, Suk-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1294-1300
    • /
    • 2010
  • In an environment where all nodes move, the sensor node receives anchor node's position information within communication radius and modifies the received anchor node's position information by one's traveled distance and direction in saving in one's memory, where if there at least 3, one's position is determined by performing localization through trilateration. The proposed localization mechanisms have been simulated in the Matlab. In an environment where certain distance is maintained and nodes move towards the same direction, the probability for the sensor node to meet at least 3 anchor nodes with absolute coordinates within 1 hub range is remote. Even if the sensor node has estimated its position with at least 3 beacon information, the angle ${\theta}$ error of accelerator and digital compass will continuously apply by the passage of time in enlarging the error tolerance and its estimated position not being relied. Dead reckoning technology is used as a supplementary position tracking navigation technology in places where GPS doesn't operate, where one's position can be estimated by knowing the distance and direction the node has traveled with acceleration sensor and digital compass. The localization algorithm to be explained is a localization technique that uses Dead reckoning where all nodes are loaded with omnidirectional antenna, and assumes that one's traveling distance and direction can be known with accelerator and digital compass. The simulation results show that our scheme performed better than other mechanisms (e.g. MCL, DV-distance).

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

The Effects of Foot Position on Dynamic Stability during Squat in Female with Genu Varum (내반슬 여성의 스쿼트 운동 시 발의 위치가 동적안정성에 미치는 영향)

  • Chung, Eun-Kyo;Lim, Bee-Oh
    • The Korean journal of sports medicine
    • /
    • v.36 no.4
    • /
    • pp.207-213
    • /
    • 2018
  • Purpose : The aim of this study was to investigate the effects of foot position on dynamic stability in female with genu varum. M ethods: Eight females with genu varum participated in this study and performed the four squat exercise methods that foot position ($-45^{\circ}$, $0^{\circ}$, $+45^{\circ}$) and $0^{\circ}$ squat with band. Center of pressure (COP; anterior-posterior, medial-lateral, traveled distance, ellipse area) and ground reaction force as dynamic stability were measured using footscan system. Multivariate analysis of variance and one-way repeated analysis of variance measurement with Tukey honestly significant difference were used to identify significant differences of foot angle ($-45^{\circ}$, $0^{\circ}$, $+45^{\circ}$) and $0^{\circ}$ squat with band method. Results: In anterior-posterior COP displacement, $-45^{\circ}$ foot angle and $0^{\circ}$ squat with band were significantly showed lower than $+45^{\circ}$ foot angle squat (p=0.006). Also, in COP traveled distance, $0^{\circ}$ squat was significantly showed lower than $+45^{\circ}$ foot angle (p=0.019). During the descending phase, ground reaction force significantly showed in -45 foot angle was lower than other exercise methods. Conclusion: The $0^{\circ}$ squat with band exercise showed higher dynamic stability and $+45^{\circ}$ foot angle squat exercise showed lower dynamic stability in female with genu varum.

Horizontal Distance Traveled by a Falling Car (추락하는 자동차가 수평으로 날아간 거리)

  • Shin, Seong-Yoon;Shin, Kwang-Seong;Lee, Hyun-Chang;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.51-54
    • /
    • 2011
  • Telematics services include automatic location tracking for emergency rescue, which is available for use in case of a car accident due to falling off roadways. This paper presents a simulation study on how far a car will fall before it hits the ground, if dropped off the roadway due to an accident or a natural disaster. The greatest distance the falling car can travel is presented in this paper, on the assumption that air resistance as well as the direction and size of the acceleration due to gravity is negligible.

  • PDF

MEASUREMENT THE PATHS OF FARM MACHINERY USING AN OPTICAL WAVE RANGE FINDER

  • Shigeta, Kazuto;Chosa, Tadashi;Nagsaka, Yoshisada;Sato, Junichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.591-597
    • /
    • 1996
  • To straighten the path that farm machinery follows in paddy fields, it is necessary to measure and evaluate the tracks that these machines leave behind. However, there are no known methods for making such measurements and evaluations since it is difficult to accurately trace the paths that the machine make in paddy fields. Therefore, a measuring system has been developed which can accurately recored the path of a farm machinery in a field by measuring the horizontal straight-line distance from the side of the field to the machine. This system consists of a track subsystem on the machine and a range finder system. A measuring appraratus is installed on a flatcar which runs on rails over 50 m long at the side of the filed. The track subsystem uses a CCD camera to track the movement of the machine in the field which is following a lengthwise path. The range finder subsystem measures the distance that the measuring apparatus has traveled on the rails and the distance from the app ratus to the machine in the field. This system makes it possible to record the path that the machine travels. Even though differences in traveling distance arise between the measuring apparatus and the farm machine, these differences are detected by image processing , which allows the machine in the field to be located accurately. The short(0.05 second) time required for image processing is enough to follow an object . In the present study, this system was able to measure the path that a moving tractor makes. Even though a lag of up to 0.4 meters occurred, this system did not miss its target during operation of the track subsystem. Thus the path measuring system developed here is able to record vehicle paths automatically by following the movement of vehicles in the field and measuring the distance to them. It is expected to come into use in such applications as unmanned moving vehicle tests.

  • PDF

Development of Autonomous Combine Using DGPS and Machine Vision (DGPS와 기계시각을 이용한 자율주행 콤바인의 개발)

  • Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.

  • PDF

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

A COMPARISON OF JERSEY CROSSBRED AND LOCAL OXEN AS DRAUGHT ANIMALS IN THE EASTERN HILLS OF NEPAL

  • Pearson, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • Four pairs of draught oxen (two local and two Jersey crossbred) were studied when they ploughed dry land on local farms. Work done, distance traveled and body temperature of each ox were measured continuously over a 5 h working day. A different team worked each day, completing at least six days work each. Individual food intakes and digestibility of feed were measured when the animals were given rice straw and tree fodder, and housed and fed according to local husbandry practices. The Jersey crossbreds, particularly the longer legged type, had a higher rate of work than the local oxen in this study. They did significantly more work and covered a greater distance during the day. The absence of a hump in the crossbred oxen had no effect on the position of the yoke or the way the oxen pulled when ploughing. The longer legged type of Jersey crossbred tended to work more erratically than any of the other teams. A fast rate of work made the oxen more liable to heat stress. When fed according to local practices and given the same amount of feed as local oxen, Jersey crossbreds tended to do less well. During the ploughing months, the local oxen gained weight, while the crossbreds remained at the same or lost some weight. Although there were some disadvantages to keeping Jersey crossbreds for work, their favourable work output suggests that the introduction of the Jersey crossbred in the hills of Nepal is unlikely to be detrimental to the performance of the work oxen population.

Inertial Dynamic Effect on the Rates of Diffusion-Controlled Ligand-Receptor Reactions

  • Lee, Woo-Jin;Kim, Ji-Hyun;Lee, Sang-Youb
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2973-2977
    • /
    • 2011
  • It has been known that the inertial dynamics has a little effect on the reaction rate in solutions. In this work, however, we find that for diffusion-controlled reactions between a ligand and a receptor on the cell surface there is a noticeable inertial dynamic effect on the reaction rate. We estimate the magnitude of the inertial dynamic effect by comparing the approximate analytic results obtained with and without the inertial dynamic effect included. The magnitude of the inertial dynamic effect depends on the friction coefficient of the ligand as well as on the relative scale of the receptor size to the distance traveled by the ligand during its velocity relaxation time.