• Title/Summary/Keyword: distance transformation

Search Result 313, Processing Time 0.03 seconds

The Lens Aberration Correction Method for Laser Precision Machining in Machine Vision System (머신비전 시스템에서 레이저 정밀 가공을 위한 렌즈 수차 보정 방법)

  • Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.10 no.10
    • /
    • pp.301-306
    • /
    • 2012
  • We propose a method for accurate image acquisition in a machine vision system in the present study. The most important feature is required by the various lenses to implement real and of the same high quality image-forming optical role. The input of the machine vision system, however, is generated due to the aberration of the lens distortion. Transformation defines the relationship between the real-world coordinate system and the image coordinate system to solve these problems, a mapping function that matrix operations by calculating the distance between two coordinates to specify the exact location. Tolerance Focus Lens caused by the lens aberration correction processing to Galvanometer laser precision machining operations can be improved. Aberration of the aspheric lens has a two-dimensional shape of the curve, but the existing lens correction to linear time-consuming calibration methods by examining a large number of points the problem. How to apply the Bilinear interpolation is proposed in order to reduce the machining error that occurs due to the aberration of the lens processing equipment.

The Kinetic Analysis of the Approach and Take-off Motion between Performance in Woman's High Jump (여자 높이뛰기에서 경기력 간 도움닫기와 발구름 동작의 운동역학적 분석)

  • Kim, Young-Suk;Ryu, Jae-Kyun;Jang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Objective : The purpose of this study was to find some kinetic variable's relationships between personal records and low records in female high jump. Methods : Collected data of the subjects(N=8, ages: $25.5{\pm}1.85$, height: $173{\pm}5.83$, mass: $54.75{\pm}6.36$ personal record: $1.71{\pm}0.04$, low record: $1.62{\pm}0.03$) were used for the last three strides and take-off phase. Five video cameras set in 30frames/s were used for recording. After digitizing motion, the Direct Linear Transformation(DLT) technique was employed to obtain 3-D position coordinates. The kinematic and kinetic factors of distance, velocity, angle, impulse, jerk variables were calculated. A paired t-test was applied for the difference of variables between personal records and lower records and for correlation with performances and variables. The significance level was accepted at p<.05. Results : There was no relationship between pattern of stride and performance. However, rate of change of velocity was related with cental of mass height(CMH) at peak point(PP). Knee, hip, backward lean, foot plant, approach and take off angle showed no difference between best record and low record. Vertical impulse momentum also showed no difference between performances. Conclusion : According to a t-test result, there were significant differences in CMH at PP and jerk at touch down between best record and low record.

A Research on the Characteristics of Virtual Reality Stores -Focused on Hyundai VR Store and eBay VR Department Store- (가상현실 점포의 특성에 관한 연구 -현대백화점 VR 스토어와 eBay VR 백화점 사례를 중심으로-)

  • Jang, Ju Yeun;Chun, Jaehoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.4
    • /
    • pp.671-688
    • /
    • 2018
  • This study investigates the characteristics of VR stores that emerged as new fashion communication media. Two case studies on Hyundai and eBay VR Department stores were conducted along with a discussion of the function and meaning of the fashion VR store. The results showed that both stores provide novel shopping experiences; however, the two were differentiated in terms of production method and technology implementation level. Functional aspects such as providing shopping efficiency and purchasing service was insufficient in both stores. Instead, they were complementing by means of product rotation, recommendation system, voice guidance, or linkage with an online shopping mall. In experiential aspects, both stores provided a strong sense of immersion. Hyundai VR store enhanced immersion with a high resolution image of a real offline store; however, it lacked in the ability to provide multisensory stimulation such as kinetic sense or auditory stimulation. The eBay VR Department store intensified the immersion experience by providing auditory stimulation as well as visual stimulation that enhanced the speed and distance sense through the utilization of animation. However, the extent of experience was limited in terms of agency and transformation because of the low interactivity found in both store systems.

Feature Matching Algorithm Robust To Viewpoint Change (시점 변화에 강인한 특징점 정합 기법)

  • Jung, Hyun-jo;Yoo, Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2363-2371
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm which is robust to the viewpoint change by using the FAST(Features from Accelerated Segment Test) feature detector and the SIFT(Scale Invariant Feature Transform) feature descriptor. The original FAST algorithm unnecessarily results in many feature points along the edges in the image. To solve this problem, we apply the principal curvatures for refining it. We use the SIFT descriptor to describe the extracted feature points and calculate the homography matrix through the RANSAC(RANdom SAmple Consensus) with the matching pairs obtained from the two different viewpoint images. To make feature matching robust to the viewpoint change, we classify the matching pairs by calculating the Euclidean distance between the transformed coordinates by the homography transformation with feature points in the reference image and the coordinates of the feature points in the different viewpoint image. Through the experimental results, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load.

Integrating Color, Texture and Edge Features for Content-Based Image Retrieval (내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합)

  • Ma Ming;Park Dong-Won
    • Science of Emotion and Sensibility
    • /
    • v.7 no.4
    • /
    • pp.57-65
    • /
    • 2004
  • In this paper, we present a hybrid approach which incorporates color, texture and shape in content-based image retrieval. Colors in each image are clustered into a small number of representative colors. The feature descriptor consists of the representative colors and their percentages in the image. A similarity measure similar to the cumulative color histogram distance measure is defined for this descriptor. The co-occurrence matrix as a statistical method is used for texture analysis. An optimal set of five statistical functions are extracted from the co-occurrence matrix of each image, in order to render the feature vector for eachimage maximally informative. The edge information captured within edge histograms is extracted after a pre-processing phase that performs color transformation, quantization, and filtering. The features where thus extracted and stored within feature vectors and were later compared with an intersection-based method. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Analysis of Sports Biomechanical Variable on the Motions of Left and Right Spikes of Volleyball (배구 레프트 스파이크와 라이트 스파이크 동작에 대한 운동역학적 변인 비교 분석)

  • Cho, Ju-Hang;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.125-134
    • /
    • 2006
  • The purpose of this study was to analyze the Biomechanical elements by looking at the differences on the motions of the right and left spikes of right-handed offense volleyball players, using 3D image analysis and force platform. For that purpose, spike motions of six male university volleyball players were recorded three times each using two 16mm high speed cameras and the speed of recording was set at 60 frames/sec. The coordinated raw data was leveled as 6Hz using low pass filtering method and the calculation of 3D coordinates was done by using a DLT (Direct Linear Transformation) method. Also KWON 3D program was used to analyze the variables. Through the experiments and research, the following results were found: That is, in case of the right spike, the required time from the toss to the impact, which affected the success rate of offense showed as longer and on the take-off, the exact timing to touch the ball was longer because the pace between right and left feet was wider, and also after the jump, the distance between the feet indicated shorter, than the left. In addition, the degree of somersault and horizontal adduction of shoulder joint was smaller and the degree of medial rotation of shoulder joint showed bigger than the left, so it indicated that it was not centered on the body, but by the arm with an axis of shoulder using a swing motion. After the impact, the speed of the ball indicated slower compared to the left spike.

Direction-of-Arrival Estimation in Broadband Signal Processing : Rotation of Signal Subspace Approach (광대역 신호 처리에서의 도래각 추정 : Rotation of Signal Subspaces 방법)

  • Kim, Young-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.166-175
    • /
    • 1989
  • In this paper, we present a method which is based on the concept of the rotation of subspaces. This method is highly related to the angle (or distance) between subspaces arising in many applications. An effective procedures is first derived for finding the optimal transformation matrix which rotates one subspace into another as closely as possible in the least squares sense , and then this algorithm is applied to the solution to general direction-of-arrival estimation problem of multiple broadband plane waves which may be a mixture of incoherent, partially coherent or coherent. In this typical application, the rotation of signal subspaces (ROSS) algorithm is effectively developed to achieve the high performance in the active systems for the case in which the noise field remains invariant with the measurement of the array spectral density matrix (or data matrix). It is not uncommon to observe this situation in sonar systems. The advantage of this techniques is not to require the preliminary processing and spatial prefiltering which is used in Wang-Kaveh's CSS focusing method. Furthermore, the array's geometry is not restricted. Simulation results are presented to illustrate the high performance achieved with this new approach relative to that obtained with Wang-Kaveh's CSS focusing method for incoherent sources and forward-backward spatial smoothed MUSIC for coherent sources including the signal eigenvector method (SEM).

  • PDF

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Robust Planar Shape Recognition Using Spectrum Analyzer and Fuzzy ARTMAP (스펙트럼 분석기와 퍼지 ARTMAP 신경회로망을 이용한 Robust Planar Shape 인식)

  • 한수환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.34-42
    • /
    • 1997
  • This paper deals with the recognition of closed planar shape using a three dimensional spectral feature vector which is derived from the FFT(Fast Fourier Transform) spectrum of contour sequence and fuzzy ARTMAP neural network classifier. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These spectral feature vectors are invariant to shape translation, rotation and scale transformation. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments including 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the recognition problems of noisy shapes.

  • PDF

Invariant Image Matching using Linear Features (선형특징을 사용한 불변 영상정합 기법)

  • Park, Se-Je;Park, Young-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.55-62
    • /
    • 1998
  • Matching two images is an essential step for many computer vision applications. A new approach to the scale and rotation invariant scene matching, using linear features, is presented. Scene or model images are described by a set of linear features approximating edge information, which can be obtained by the conventional edge detection, thinning, and piecewise linear approximation. A set of candidate parameters are hypothesized by mapping the angular difference and a new distance measure to the Hough space and by detecting maximally consistent points. These hypotheses are verified by a fast linear feature matching algorithm composed of a single-step relaxation and a Hough technique. The proposed method is shown to be much faster than the conventional one where the relaxation process is repeated until convergence, while providing matching performance robust to the random alteration of the linear features, without a priori information on the geometrical transformation parameters.

  • PDF