• Title/Summary/Keyword: distance calibration

Search Result 271, Processing Time 0.036 seconds

Variation in Vegetation Area caused by Topographical Change at Jinudo in the Nakdong Estuary (낙동강 하구역 진우도내 지형변동에 따른 식생면적의 변화)

  • Ryu, Sung-Hoon;Lee, In-Cheol;Park, So-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2009
  • In order to analysis the variation in vegetation area caused by topographical change at Jinudo in the Nakdong estuary, we used aerial photographs of Jinudo from 1998 to 2006. To extract an accuracy shoreline from these aerial photographs, a tide calibration was performed. We also estimated the annual variation in topographic area and vegetation area, and then analyzed the relationship between them by a correlation analysis. The following results were obtained: 1) The calibrated shoreline distance of Jinudo from 1998 to 2006 was estimated to have a range of (-)1,927 cm to (+)4,671 cm. 2) Annual changes in the topographic area and vegetation area in Jinudo have been increasing gradually from 1998, and the correlation coefficient between topographic area and vegetation area is 0.97. 3) The estimated topographic areas were with following order: southern (III), eastern (IV), northern (II) and western (I), while for the vegetation area, the order was southern (III), northern (II), eastern (IV) and western (I). 4) The vegetation area of the southern region (III) of Jinudo had the largest size among the regions, and was calculated to be $4.3{\sim}5.4$ times larger than the eastern region (IV).

Precision Improvement of Indoor Wireless Positioning by Considering Clock Offsets and Wireless Synchronization (클럭 오프셋과 무선동기를 고려한 실내 무선측위 정밀도 향상 기법)

  • Lim, Erang;Kang, Jimyung;Lee, Soonwoo;Park, Youngjin;Lee, Woncheol;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.894-900
    • /
    • 2012
  • Indoor wireless positioning system uses ranging information of beacons in order to precisely estimate a tag location. To estimate distance between each beacons and tag, the system calculates arrival time of a tag pulse with clock of each beacon including independent clock offset. This clock offset seriously affects the performance of ranging and positioning. We propose in this paper a clock offset compensation method to solve this problem. To verify the performance of the proposed method, we simulated location estimation with random clock offset between -1,000ppm and 1,000ppm, and the result shows that the proposed scheme effectively solves the clock offset problem.

A Study on Parking Guideline Generation Algorithm (주차 가이드라인 생성 알고리즘에 대한 연구)

  • Heo, Jun-Ho;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3060-3070
    • /
    • 2015
  • Recently, novice driver or weak drivers was difficult to understand the movement characteristics of the car and are immature sense of width and length of the car according to various each driver's sex and age, model. To complement this problem, the use of rear sensor and the camera is increased. And the parking assistance system that improves the convenience of parking the driver is being developed. Accordingly, parking guide system is needed to reflect the difference in the steering angle and correct the error distance. In this study, it is proposed that the turning radius during backward by complementing the existing Ackerman Jentaud type. And it develops more accurate parking guideline to be able to generat algorithm by applying the formula to propose a steering wheel angle sensor value derived through the handle.

A NEW APPROACH OF CAMERA MODELING FOR LINEAR PUSHBROOM IMAGES

  • Jung, Hyung-Sup;Kang, Myung-Ho;Lee, Yong-Woong;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1162-1164
    • /
    • 2003
  • The methods of the geometric reconstruction and sensor calibration of satellite linear pushbroom images are investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbit parameters, longitude of the ascending node(${\omega}$), inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. Time-dependent orbit parameters are expressed by quadratic polynomials. SPOT-5 images have been used for validation tests. The results are that the RMSE acquired from 20 GCPs is 1.763m and the RMSE of 5 checking points 2.470m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image using pushbroom camera.

  • PDF

Factors influencing inter-hospital transfer time - A private ambulance - (병원 간 전원 시간에 영향을 미치는 요인 - 일개 사설이송단을 중심으로 -)

  • Kim, Seong-Ju
    • Journal of Korean Clinical Health Science
    • /
    • v.7 no.1
    • /
    • pp.1215-1223
    • /
    • 2019
  • Purpose: This study is to figure out not only the characteristics relating to transfer time of inter-hospital transfer patient which is transferred by a private ambulance, but also factors influencing the transfer time. Methods: In this study, an analysis of 750 patients with high severity levels among those transferred to another hospital by a private ambulance in Busan for whole year of 2017. Results: The results showed that the following factors significantly influence the total inter-hospital transfer time: Ambulance crew (${\beta}=10.525$, p=.001) and patient and carer (${\beta}=37.606$, p<.001) when setting a doctor (selecting a medical institution) as a criterion; availability of the specialized care (${\beta}=12.435$, p=.008) when setting the near distance (reason for selecting a hospital for transfer) as a criterion. The explanatory power of this analysis was R2=0.423, whereas the explanatory power of calibration was R2=0.411. Conclusions: Factors that increase the total inter-hospital transfer time were the ambulance crew, and patient and carer's selecting a medical institution, and the reason for selecting a hospital where enables to offer the specialized care services.

A Monocular Vision Based Technique for Estimating Direction of 3D Parallel Lines and Its Application to Measurement of Pallets (모노 비전 기반 3차원 평행직선의 방향 추정 기법 및 파렛트 측정 응용)

  • Kim, Minhwan;Byun, Sungmin;Kim, Jin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1254-1262
    • /
    • 2018
  • Many parallel lines may be shown in our real life and they are useful for analyzing structure of objects or buildings. In this paper, a vision based technique for estimating three-dimensional direction of parallel lines is suggested, which uses a calibrated camera and is applicable to an image being captured from the camera. Correctness of the technique is theoretically described and discussed in this paper. The technique is well applicable to measurement of orientation of a pallet in a warehouse, because a pair of parallel lines is well detected in the front plane of the pallet. Thereby the technique enables a forklift with a well-calibrated camera to engage the pallet automatically. Such a forklift in a warehouse can engage a pallet on a storing rack as well as one on the ground. Usefulness of the suggested technique for other applications is also discussed. We conducted an experiment of measuring a real commercial pallet with various orientation and distance and found for the technique to work correctly and accurately.

Position Tracking System Based on UWB and MEMS IMU (UWB 및 MEMS IMU 복합 센서 기반의 위치 추적 시스템)

  • Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.1011-1019
    • /
    • 2019
  • In this paper, we propose a system that can more precisely identify and monitor the position of the tool used in the assembling workplace such as automobile production. The proposed positioning monitoring system is a combination of UWB communication module and MEMS IMU sensor. Since UWB does not need modulation and demodulation function and has low power density, UWB is widely used in indoor positioning field. However, it may cause positioning error due to errors in RF transmission and reception process, which may cause positioning accuracy. Therefore, in this paper, we propose an algorithm that uses IMU as an auxiliary means to compensate for errors that may occur in positioning using only UWB. The tag and anchor of UWB module measure the transmission / reception time by transmitting signals to each other and then estimate the distance between tag and anchor. The MEMS IMU sensor serves to provide positioning calibration information. The tag, which is a mobile node and attached to a moving tool, measures the three-dimensional position of the tool and transfers the coordinate data to the anchor. Thus, it is possible to confirm whether or not the specific tool is properly used according to the prescribed regulations.

Calibration of crop growth model CERES-MAIZE with yield trial data (지역적응 시험 자료를 활용한 옥수수 작물모형 CERES-MAIZE의 품종모수 추정시의 문제점)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.277-283
    • /
    • 2018
  • The crop growth model has been widely used for climate change impact assessment. Crop growth model require genetic coefficients for simulating growth and yield. In order to determine the genetic coefficients, regional growth monitoring data or yield trial data of crops has been used to calibrate crop growth model. The aim of this study is to verify that yield trial data of corn is appropriate to calibrate genetic coefficients of CERES-MAIZE. Field experiment sites were Suwon, Jinju, Daegu and Changwon. The distance from the weather station to the experimental field were from 1.3km to 27km. Genetic coefficients calibrated by yield trial data showed good performance in silking day. The genetic coefficients associated with silking are determined only by temperature. In CERES-MAIZE model, precipitation or irrigation does not have a significant effect on phenology related genetic coefficients. Although the effective distance of the temperature could vary depending on the terrain, reliable genetic coefficients were obtained in this study even when a weather observation site was within a maximum of 27 km. Therefore, it is possible to estimate the genetic coefficients by yield trial data in study area. However, the yield-related genetic coefficients did not show good results. These results were caused by simulating the water stress without accurate information on irrigation or rainfall. The yield trial reports have not had accurate information on irrigation timing and volume. In order to obtain significant precipitation data, the distance between experimental field and weather station should be closer to that of the temperature measurement. However, the experimental fields in this study was not close enough to the weather station. Therefore, When determining the genetic coefficients of regional corn yield trial data, it may be appropriate to calibrate only genetic coefficients related to phenology.

Development of relative radiometric calibration system for in-situ measurement spectroradiometers (현장관측용 분광 광도계의 상대 검교정 시스템 개발)

  • Oh, Eunsong;Ahn, Ki-Beom;Kang, Hyukmo;Cho, Seong-Ick;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.455-464
    • /
    • 2014
  • After launching the Geostationary Ocean Color Imager (GOCI) on June 2010, field campaigns were performed routinely around Korean peninsula to collect in-situ data for calibration and validation. Key measurements in the campaigns are radiometric ones with field radiometers such as Analytical Spectral Devices FieldSpec3 or TriOS RAMSES. The field radiometers must be regularly calibrated. We, in the paper, introduce the optical laboratory built in KOSC and the relative calibration method for in-situ measurement spectroradiometer. The laboratory is equipped with a 20-inch integrating sphere (USS-2000S, LabSphere) in 98% uniformity, a reference spectrometer (MCPD9800, Photal) covering wavelengths from 360 nm to 1100 nm with 1.6 nm spectral resolution, and an optical table ($3600{\times}1500{\times}800mm^3$) having a flatness of ${\pm}0.1mm$. Under constant temperature and humidity maintainance in the room, the reference spectrometer and the in-situ measurement instrument are checked with the same light source in the same distance. From the test of FieldSpec3, we figured out a slight difference among in-situ instruments in blue band range, and also confirmed the sensor spectral performance was changed about 4.41% during 1 year. These results show that the regular calibrations are needed to maintain the field measurement accuracy and thus GOCI data reliability.

A Melon Fruit Grading Machine Using a Miniature VIS/NIR Spectrometer: 2. Design Factors for Optimal Interactance Measurement Setup

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Yoo, Soo-Nam;Choi, Yong-Soo
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • Purpose: In near infrared spectroscopy, interactance configuration of a light source and a spectrometer probe can provide more information regarding fruit internal attributes, compared to reflectance and transmittance configuration. However, there is no through study on the parameters of interactance measurement setup. The objective of this study was to investigate the effect of the parameters on the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from greenhouses at three different harvesting seasons. The prediction models were developed at three distances of 2, 5, and 8 cm between the light source and the spectrometer probe, three measurement points of 2, 3, and 6 evenly distributed on each sample, and different number of fruit samples for calibration models. The performance of the models was compared. Results: In the test at the three distances, the best results were found at a 5 cm distance. The coefficient of determination ($R_{cv}{^2}$) values of the cross-validation were 0.717 (standard error of prediction, SEP=$1.16^{\circ}Brix$) and 0.504 (SEP=4.31 N) for the estimation of SSC and firmness, respectively. The minimum measurement point required to fully represent the spectral characteristics of each fruit sample was 3. The highest $R_{cv}{^2}$ values were 0.736 (SEP=$0.87^{\circ}Brix$) and 0.644 (SEP=4.16 N) for the estimation of SSC and firmness, respectively. The performance of the models began to be saturated when 60 fruit samples were used for developing calibration models. The highest $R_{cv}{^2}$ of 0.713 (SEP=$0.88^{\circ}Brix$) and 0.750 (SEP=3.30 N) for the estimation of SSC and firmness, respectively, were achieved. Conclusions: The performance of the prediction models was quite different according to the condition of interactance measurement setup. In designing a fruit grading machine with interactance configuration, the parameters for interactance measurement setup should be chosen carefully.